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ABSTRACT. The “Complete Triangle” figure serves as a treasure-trove of trigonometric facts, incor-
porating a large number of concepts that students are expected to remember about a Trigonometry
course, from the computational to the terminological.
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FiGUurE 1. The Complete Triangle.

1. INTRODUCTION

Trigonometry —literally the study of “triangle measurement”— is, more fundamentally, the
study of measurement. In particular, it bridges the gap between two wildly different notions of
measurement: the lengths of segments and the sizes of angles.

As we all know, an angle is defined as being bounded by two infinitely long rays emanating from
a common point, the vertex (V). (See Figure 2.) If we were to locate two points (A and B), one
on each ray, the same distance from the vertex, our Euclidean instincts might compel us to draw
the line containing them; here, we’ll make do with a segment. We might also draw a circle with
center V passing through A and B, recognizing the segment as a chord of the circle.
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(a) A chord spanning an angle. (b) The chord changes as the angle changes.
FIGURE 2. A chord associated with an angle.

The connection between the chord and the angle —between the length of the chord and the size
of the angle— is clearly a tight one. (Provided that we’re always talking about A and B being the
same chosen distance from V,) An angle with the smallest possible size (0°) would yield a chord
with the shortest possible length (0); an angle of the largest possible size! (180°) would yield the
longest possible chord (with length equal to the diameter of the circle, which is twice the chosen
distance from A or B to V'); somewhere in there is a chord tied to the right angle (90°), or to any
angle you prefer. (See Figure 2(b).)

Note that, while the qualitative connection is clear —the wider the angle, the longer the chord—
the quantitative connection is extremely muddy. The chord that “goes with” the 180° angle is not
twice as long as the chord that goes with the 90° angle; it’s twice as long as the chord that goes
with the 60° angle! Part of trigonometry is understanding the seemingly bizarre nature of that
connection,? but the point here is that the connection ezists: If you know the size of the angle,
then you can get the length of the chord, and vice-versa. The connection makes the information
virtually interchangeable, which gives us problem-solving options.

Mathematicians never being content to leave well enough alone, trigonometric tradition has
handed down, not one, but siz® segments that “go with” an angle (none of which is the chord
described above, although one is related to it). Each segment its own special connection to the
angle and offers its own special problem-solving advantage (not to mention: disadvantages). These
segments —more precisely, their lengths— give rise to what we know as the standard trig functions:
sine, tangent, secant, cosine, cotangent, and cosecant. Sadly, many (if not most) modern treatments
of trigonometry ignore almost all of the underlying segments, robbing the functions of their geom-
etry and their meaning, and, thus, making the subject appear arbitrary and cryptic to students.
This paper seeks to restore the segments to prominence, combining them into a remarkable figure
called the “Complete Triangle” that promotes comprehension (not merely memorization) of many
fundamental principles of trigonometry.

2. THE COMPLETE TRIANGLE

We’ll adopt a conventional setting by starting with the unit circle in the coordinate plane. (See
Figure 3.) That is, consider a circle of radius 1, centered at the origin (O). For the time being, we’ll

IFor the purposes of this discussion, angles don’t get bigger than a straight angle.

2And that’s not easy! Although the connection had been studied and used for thousands of years, the formula for
converting angle sizes into chord lengths wasn’t known until Madhava at the turn of the 1400s in the East or Isaac
Newton in the 1670s in the West. (How do I cite the on-line Encyclopedia Britannica?) Before then, the state of the
art was effectively to compile look-up tables of values, a practice that hand-held calculators made obsolete only a few
decades ago.

3Actually, there were more, but they have essentially fallen out of favor.
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restrict our attention to the first quadrant, letting X and Y be the points where the circle crosses
the z- and y-axes, and choosing P to be a point somewhere in the quarter-circular arc between
them. The angle XOP, which we’ll say has measure 6, is the focus of our attention.

O X

FIGURE 3. A first quadrant angle.

The first of our segments that “go with” 0 (Figure 4(a)) is the perpendicular dropped from P to
the z-axis. Its seemingly unmotivated construction traces back to the segment of the Introduction:
if we mirror the angle POX in the z-axis, then we see this segment as half of the chord spanning
twice the angle . Over the years, this semi-chord —which we now know as the sine segment—
stole the mathematical spotlight from the full chord.
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(a) The sine segment. (b) The tangent segment. (c¢) The secant segment.

FIGURE 4. Three segments associated with the angle.

The second segment (Figure 4(b)) is the perpendicular “raised” from P to the x-axis. Being
at right angles to a radius of the circle, this segment is tangent to the circle, earning the name of
tangent segment.4

The third segment (Figure 4(c)) has already been determined: It joins the origin to the point
where the tangent segment meets the xz-axis. As part of a line passing through the circle, it receives
the name secant segment.”

The lengths of these segments are as intimately connected to the size of the angle as the chord
discussed in the Introduction. Again, the exact computational connection is tricky (and beside the

4Al‘cerna‘cively7 we could have defined this segment by raising a perpendicular from X to the extended radius OP.
Doing this, and mirroring POX as we did with sine, would the reveal the segment to be half the tangent spanning
twice the angle 0 in a natural way.
SIf we think of this segment as being half of some other (an insight useful for sine and tangent), then that other
would be a proper secant segment, passing all the way through the circle.
3



point here), but the general sense is clear: bigger angles have longer segments, and to know the
angle’s size is to know each segment’s length (and vice-versa). We’ll cover specific observations
about these connections in later sections.

The final three segments (Figure 5) form a perfect complement to the first three, because they’re
constructed in the same way, but relative to the angle POY , the complement of POX: the perpen-
dicular dropped from P to the y-axis is the complementary sine —that is, the co-sine— segment;
the perpendicular raised from P to the y-axis is the complementary tangent (co-tangent) segment;
and the complementary secant (co-secant) segment joins origin to the intersection of the co-tangent
segment and the y-axis.
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(a) The cosine segment. (b) The cotangent segment. (¢) The cosecant segment.

FiGURE 5. Three co-segments associated with the angle.

Together, these six segments, along with the radius segment OP of length 1, form the figure
we call the “Complete Triangle” (Figure 1). The geometry of the figure neatly encodes numerous
properties of, and relationships among, the trigonometric functions that take their names from the
segments.

NOTE: As we explore these properties and relationships, we will continue to
restrict our attention to the first quadrant.

3. ETYMOLOGICAL-DEFINITIONAL PROPERTIES

Identifying the trig functions with the trig segments in the Complete Triangle makes their names
obvious:

e The tangent and cotangent segments are parts of a tangent line of the circle.
e The secant and cosecant segments are parts of secant lines of the circle.
e The sine and cosine segments are semi-chords of the circle.

6Blame ancient transcribers for the fact that this statement isn’t as satisfyingly obvious as the others:



Moreover, the “co-trig” segments being constructed in relation to the complement of the angle 0
—which we might call “cof”— makes that terminology (and some fundamental equalities) obvious
as well:

The cotangent segment for 6 is the tangent segment for cof. (cot(#) = tan(cof))

The cosecant segment for 6 is the secant segment for cofl. (csc(f) = sec(cof))

The cosine segment for 6 is the sine segment for cof. (cos() = sin(cof))

(Also, the radius segment for 6 is the radius segment for cof. In many ways, the radius
serves as its own co-segment.)

We see, then, that the names for the trig functions actually make sense. This alone secures
the Complete Triangle’s position as an important pedagogical tool. Textbooks that introduce the
trig functions as ratios of lengths in a right triangle (see Sections 5.3 and 5.4) impede learning by
reducing the associated vocabulary to wholly-unmotivated “buzzwords”.

4. DYNAMIC PROPERTIES

Intuition-building insights regarding the interrelation of the trigonometric values can be gleaned
from treating the Complete Triangle as a dynamic figure, sweeping the radius segment through the
entire quarter circle, from 6 = 0° to § = 90°.

4.1. Fun-House Mirror Properties. Notice that the radius segment (“1”) neatly separates the
“ordinary elements” (angle 6 and the segments tan, sec, and sin) from the “co-elements” (angle cof
and the segments cot, csc, and cos). In a way, the radius acts as a fun-house mirror through which
each element can see its co-element as a version of itself, distorted in such a way that a co-element
grows as the element shrinks, and vice versa.

As 60  gets bigger (smaller), cof gets smaller (bigger).
As tan gets bigger (smaller), cot gets smaller (bigger).
As sec gets bigger (smaller), csc gets smaller (bigger).
As sin gets bigger (smaller), cos gets smaller (bigger).

Important: This observation is qualitative, not quantitative. It does not precisely describe how
much a co-element grows in relation to how much an element shrinks. In fact, the formulas governing
the relative growth/shrinkage factors are different for each element/co-element pair.

Note that every element exactly matches its co-element when 6 = cof = 45°. As a consequence
of the Fun House Mirror Properties, we have that, if 8 < cof), then each of the ordinary segments
are smaller than its co-unterpart; and, if 6 > cof), then each ordinary segment is larger than its
co-unterpart. Noting that § and cof count as co-elements, we can unify these statements into one:

Our modern word sine is derived from the Latin word sinus, which means “bay” or “fold”, from
a mistranslation (via Arabic) of the Sanskrit word jiva, alternatively called jya. Aryabhata used
the term ardha-jiva (“half-chord”), which was shortened to jiva and then transliterated by the
Arabs as jiba. FEuropean translators like Robert of Chester and Gherardo of Cremona in 12th-
century Toledo confused jiba for jaib, meaning “bay”, probably because jiba and jaib are written
the same in the Arabic script (this writing system, in one of its forms, does not provide the
reader with complete information about the vowels). [History of trigonometric functions. (2006,
November 5). In Wikipedia, The Free Encyclopedia. Retrieved 03:48, December 22, 2006, from
http://en.wikipedia.org/w/index.php?title=History_of_Trigonometric_functions&oldid=85828396]
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All ordinary elements are either simultaneously larger than, simultaneously
equal to, or simultaneously smaller than their respective co-elements.

4.2. Range Properties. At the extremes of the radius segment’s sweep, we find that the some
trig segments collapse into points, others coincide with the radius segment, and yet others be-
come infinitely long rays parallel to the z- or y-axis. We read from these facts the ranges of the
corresponding trigonometric functions.

0° 90° Range’

sine collapsed to point coincident with radius | 0 to 1
tangent collapsed to point infinitely long 0 to oo
secant | coincident with radius infinitely long 1 to oo
cosine | coincident with radius collapsed to point 1to0
cotangent infinitely long collapsed to point oo to 0
cosecant infinitely long coincident with radius | co to 1

Disclaimer about co: The table reflects ranges as perceived when restricting our at-
tention to first quadrant angles. As segments such as the tangent segment approach
ray status, their lengths reach infinitely large —and unambiguously positive— val-
ues. As we discuss later, when we consider angles beyond the first quadrant, the
signed length of the tangent segment at 90° cannot be unambiguously identified, so
that the trigonometric value tan 90° is officially considered “undefined”.

Note that at 8§ = 45° the Complete Triangle is half of a square whose center is the point where
the radius, tangent, and cotangent segments meet. These three segments are clearly congruent, so
that tan 45° = cot 45° = 1.

5. “GENERAL POSITION” PROPERTIES (IDENTITIES AND COMPARATIES)

The extreme (or “degenerate”) cases —namely, § = 0° and § = 90°— cause elements of the
Complete Triangle to collapse into each other or extend indefinitely. If we set aside these cases
for a moment, we see that the Complete Triangle figure in general position contains seven similar
right triangles, regardless of the angle involved. Leveraging geometric theorems regarding right
triangles and families of similar triangles, we can draw a number of computational conclusions —
equalities and comparisons— that themselves hold regardless of the angle involved. Minor tweaks
usually suffice to extend these results to apply to degenerate cases. The term for such universal
equalities is “identities”; with (so far as I know) no official term for the analogous notion of universal
comparsions, we’ll call them “comparaties”.

To get at our results in this section, we name the triangles in a way that reflects co-triangle pairs,
with AIV is it own co-triangle. In each triangle, we refer to the leg opposite the angle congruent
to 6 as opp, the leg adjacent to the angle congruent to 6 as adj, and the hypotenuse as hyp.

Of course, Al and Aco-I are congruent, so we don’t need to consider them separately.

5.1. Comparaties. The Triangle Inequality is an elementary expression of the concept that the
shortest distance between two points is a straight line.

The sum of the lengths of two sides of any triangle is greater than (or, in
degenerate cases, equal to) the length of the third side.

6



A hyp opp adj
I 1 sin cos
co-1 1 sin cos
II sec tan 1
co-11 csc 1 cot
11T tan sec — cos sin
co-11T cot cos csc — sin
IV | tan+ cot sec csc

For our triangles, the result implies
opp + hyp > adj adj + hyp > opp opp + adj > hyp

However, since our triangle are right triangles, we can exploit this fact

The hypotenuse is the longest side of a right triangle.

to refine our list of comparisons to

hyp > adj hyp > opp opp + adj > hyp

with equality only in degenerate cases

Table 1 lists the comparaties that arise from applying these facts to our seven triangles.

AT& col 1 > cos ( = only at 0°)
1 > sin ( = only at 90° )
sin + cos > 1 ( = only at 0° and 90° )
ATl sec > 1 ( = only at 0°)
sec > tan ( = only at 90° )
tan +1 > sec ( = only at 0° and 90° )
A co-11 csc > cot ( = only at 0°)
csce > 1 ( = only at 90° )
1+ cot > csc ( = only at 0° and 90° )
A TIT tan > sin ( = only at 0°)
tan > sec — cos ( = only at 90°)
sec —cos+sin > cot ( = only at 0° and 90° )
A co-111 cot > csc—sin ( = only at 0°)
cot > cos ( = only at 90° )
csc —sin+cos > cot ( = only at 0° and 90° )
ATV tan + cot > csc (= only at 0°)
tan + cot > sec ( = only at 90° )
sec + csc > tan+cot (= only at 0° and 90° )

TABLE 1. Seventeen Comparaties. (The last is redundant.)

Apart from the comparaties bounding trig values above or below by 1, these results get tend to
get very little attention. Even so, some of them help reinforce observations one makes about the
graphs of the trigonometric functions.

e tan > sin. We notice that the graphs coincide at a point (the origin), and that the graph

of tan rides just above that of sin for a while before they split dramatically. Likewise for
7



cot > cos, although the point of coincidence is different.

e sec > tan. Here we note that, although both graphs are asymptotic as 6 approaches 90°,
the graph of sec is always dominant. In light of the comparaty tan +1 > sec, we see that the
dominance is slight at best, with the secant graph sandwiched between the tangent graph
and a one-vertical-unit translate of the tangent graph. Likewise for csc > cot.

The comparaties involving sums of functions may provide their own insights in some context or
other.

5.2. Pythagorean Identities. Perhaps the most well-known result in all of geometry is the The-
orem of Pythagoras, which states

The sum of the squares of the lengths of the two legs of a right triangle is equal to
the square of the length of the hypotenuse.

opp* + adj* = hyp?

Table 2 applies this theorem to our seven triangles.

AT& coI|  cos®+sin® = 1
ATl sin? +(sec — cos)? = tan?
A co-Il | cos? +(csc —sin)? = cot?
A 111 1 + tan? = sec?
A co-1I1 1 + cot? = csc?
ATV [ sec®+csc? = (tan+cot)?

TABLE 2. Pythagorean Identities

Of course, the identities involving 1 are by far the most significant —they make up part of that
traditional “core set”— but the others make interesting curiosities.

5.3. Internal Proportionality Properties. A family of similar triangles admits the following
(internal) proportionality property:

The ratio of the lengths of two sides of a given triangle is equal to the ratio of the
lengths of the corresponding sides of any triangle similar to the given one.

We can put this another way:

Each of the following ratios is constant for all triangles in the Complete Triangle
figure:

opp/hyp adj/hyp opp/adj

Table 3 gives the full list equated ratios, which (by equating pairs) make for 45 individual
proportionality identities (or 90, if you count reciprocated versions).
Amid the chaos are four special relations:

sec 1 csc 1 tan  sin cot  cos < 1 >

1 Cos 1 sin 1 CcoS 1 sin \ tan

In most modern textbook treatments of trigonometry, these relations are used as (wholly un-
motivated) definitions of the sec, csc, tan, and cot values instead of as theorems regarding those
values. Such treatments not only rob the words of their inherent geometrical meaning, they convey
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AT &co-1 ATl A co-I1 A III A co-II1 ATV
opp sin _ tan _ 1 __ sec—cos __ Ccos _ sec
hyp 1 — sec — csc — tan — cot ~ tan+cot
adj cos _ 1 _ cot, _ sin __ csc—sin __ csc
hyp 1 — sec — csc — tan — cot ~ _tan—+cot
opp sin _ tan _ 1 __ sec—cos  __ cos _ sec
adj cos — 1 — cot — sin — csc — sin — csc

TABLE 3. Internal Proportionality Identities.

to students the notion that the words of mathematics don’t have inherent meaning, that math terms
are no more than miscellaneous syllables attached at random to some fact or another.

That said, the facts that cosecant is the reciprocal of sine, secant is the reciprocal of cosine,
and cotangent is the reciprocal of tangent are of considerable significance, such significance that
using the facts in a definitional role isn’t unwarranted (only somewhat pedagogically distasteful).
Interestingly, the Complete Triangle figure provides a convenient way to remember which segment
is the reciprocal of which:

Segment pairs whose lengths are reciprocals are parallel in the Complete Triangle.

sin || csc cos || sec tan || cot (11

5.4. External Proportionality Properties. A pair of similar triangles exhibit this (ezternal)
proportionality property:

The ratios of the lengths (a, b, ¢) of the sides a triangle to the respective lengths
(', V', ) of the corresponding sides of a similar triangle are equal.

For our purposes, we can use the restatement:

Writing (hyp, opp, adj) and (hyp', opp’, adj’) for the lengths of sides of two
sub-triangles of the Complete Triangle,

hyp  opp  adj

hyp  opp’ adj’

All told, the 45 (or 90, counting reciprocation) individual identities derived from Table 4 duplicate
those derived from the internal proportions in Table 3. Even so, the external-vs-internal approaches
are subtly —though not-insignificantly— different, warranting separate consideration.

5.5. Area Properties. We can derive a few final identities by computing areas of triangles from
the Complete Triangle figure in two different ways ...

e Half the product of the lengths of the legs.
e Half the product of the length of the hypotenuse and the length of the altitude to the
hypotenuse.

. and equating double (to discard the unnecessary “%”s) the resulting expressions, as shown in

Table 5.

These results can be derived by cross-multiplying appropriate proportions from preceding sec-
tions, but, again, the distinctive approach is worth highlighting. Besides, the last of these is one of
the most interesting of the non-“core” identities.
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ATl A co-I1 A TII A co-11I1
1 _sin _cos | I _sim__cos | _ I _ _sin _ cos 1 _sin _ _ cos
AT &co-l sec — tan — 1 csc 1 — cot | tan — sec—cos — sin cot — cos — csc—sin
ATl _ sec _ tan _ T [ sec _ _tan __ T sec _ fan _ 1
csc 1 — cot | tan — SCCICOS — sir% cot C(l)s csc —tsin
— - osC — cot csc — 1 _ _co
A co-II tan — sec—cos —_ sin cot cos csc — sin
— _ . tan __ sec—cos __ sin
A III cot cos ~ csc—sin
A coIII = = = =
ATV
1 _ sin _ cos
AT &co-1 tan +cot 1?ec — csc
sec — tan _ 1
Al tan +cot S%C — csg
csc —_ 1 _ cot
A co-ll tanf+cot — sec — csc
tan __ sec—cos __ sin
A 11T tan +cot sec ~ csc
cot __ COS __ CSC—sIn
A co-III tanf+cot — sec —  csc
. . .. h ;
TABLE 4. External Proportionality Identities. 2B = oPB — adj
hyp opp adj
Legs Hypotenuse & Altitude
ATl tan-1 = sec - sin
AcoIl| cot-l1 = CSC - COS
ATV |sec-csc = (tan+cot) - 1

TABLE 5. Area Identities.

6. THE COMPLETE TRIANGLE IN ANY (QUADRANT

Here’s a quick outline, to be refined in an upcoming draft.

e The structure of the Complete Triangle is built off of an angle’s “reference angle” in a
quadrant.

— Sine is a vertical semi-chord, and cosecant is (part of) a vertical secant line.

— Cosine is a horizontal semi-chord, and cosecant is (part of) a horizontal secant line.

— Tangent and cotangent are (parts of) the line tangent to the endpoint of the radius
segment(with tangent connecting to the secant segment and cotangent connecting to
the cosecant segment).

e The values of the trig functions are signed lengths of the corresponding segments, according
to some seemingly-arbitrary rules (which I'll justify below).

— Sine and cosecant are positive when these segments fall above the x-axis (Quadrants I
and II), and negative when the segments fall below the x-axis (Quadrants III and IV).

— Cosine and secant are positive when the segments fall to the right of the y-axis (Quad-
rants [ and IV), and negative when the segments fall to the left of the y-axis (Quadrants
IT and III).

— Tangent and cotangent are positive in Quadrants I and I1I, and negative in Quadrants 11
and IV. (A good exercise for students is to come up with the Quadrant-free counterpart
for this rule. Here’s a decent attempt: Tangent is positive when the segment “points
clockwise” from the point of tangency, and negative when the segment “points counter-
clockwise”; vice-versa for cotangent.)

e The sign assignments make secant and tangent “undefined” at angles coterminal with 90°
and 270°; they make cosecant and cotangent “undefined” at angles coterminal with 0° and
180°. To see why, consider the Complete Triangles associated with angles extremely close
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to either side of # = 90. The tangent segment for 6 ever-so-slightly-less-than 90° is an
extremely large positive number; the closer 8 gets to 90°, the more extreme the largeness,
until 8 = 90° is expected to give a tangent value of co. On the other hand, the tangent
segment for 6 ever-so-slightly-more-than 90° is an extremely large negative number; the
closer 6 gets to 90° in that case, the more extreme the largeness, until = 90° is expected
to give a tangent value of —oco. Because both co and —oo are equally justifiable, the
expression “tan90°” is (in this larger context) ambiguous, making the value “undefined”.

6.1. Explaining the Signs. I don’t normally introduce the Unit Circle as the vehicle for defining
sine and cosine for arbitrary angles. I prefer to build toward a “full circle” (and beyond) view of
Trigonometry by establishing a firm foundation of understanding in Quadrant I alone, focussing
as much as possible on geometric principles. For one thing, this helps keep Geometry from being
“that weird course I took in between Algebra I and Algebra II”. More importantly, it highlights
the general notion of how mathematics (often) advances.

Our understanding of objects in a reasonably-uncomplicated realm forms the basis of relational
facts, and then those relational facts form the basis of our understanding of object in a slightly-more-
complictated realm; the tail, as they say, wags the dog. And this pattern is repeated throughout
mathematics; witness the advent of complex numbers, fractional (even negative) dimensions and
factorials, Lebesgue integration, and ... the trigonometric functions.

One reason to explore Quadrant I thoroughly before moving on is that almost (if not absolutely)
every worthwhile identity has an elegant “picture-proof” in that context. The bulk of this paper
(hopefully) shows that the Complete Triangle serves as the picture for many such proofs. Others
abound. For example, this article

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html

gives some picture-proofs (though not my favorite one) of the Angle-Addition Formulas®
sin (A + B) = sin Acos B + cos Asin B cos (A + B) = cos Acos B — sin Asin B

I use these formulas as the springboard for expanding our angular horizons.

If we were at all squeamish about our “degenerate” configurations in the Complete Triangle, for
instance, we might reasonably view our presumed values of sin 90° and cos 90° with some suspicion.
However, by assigning A = 30° and B = 60°, the above formulas confirm those suspect values using
irrefutable trig values for non-degenerate angles A and B; that is, while the left-hand sides of the
formulas might be “iffy”, the right-hand sides are perfectly well-defined for the given A and B, and
the resulting computation should remove any lingering doubt about the true nature of sin 90° and
cos 90°. (Likewise, the Angle-Subtraction Formulas confirm the values of sin0° and cos 0°.)

More dramatically, in a context where sin # and cos 8 are lengths of segments in a right triangle
having an angle 6, the expressions “sin 120°” and “cos 120°” are laughably non-sensical. But the
Angle-Addition Formula tells us that, if “cos120°” is to equal ANYTHING, then it must be equal

8Drifting a bit off topic, here’s a “cheer” to help remember the Angle-Addition and -Subtraction Formulas:
Sine! Cosine! Sign! Cosine! Sine!
Cosine, cosine, co-sign, sine, sine!
Sprinkling in As and Bs as necessary, the lines encode the right-hand sides of the formulas for sin (A 4+ B) and

cos (A £ B), where we take “sign” to indicate the same sign (plus or minus) as in the combined argument from the
left-hand side, and “co-sign” indicates the opposite sign (minus or plus):

sin (A + B) = sin Acos B + cos Asin B sign: + —» +
cos (A+ B) = cos Acos B Fsin Asin B co—sign: £ — F
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to —3 (the result of entering A = B = 60° into the right-hand side of the formula); likewise the
expression “sin 120°” can be given meaning. More generally, however, having come to grips with
the trig values at 90°, we can extend our understanding throughout all of Quadrant II via these
computations:
sin (A 4 90°) = sin A cos 90° + cos Asin90° = cos A
cos (A +90°) = cos Acos90° — sin Asin90° = —sin A

whose right-hand sides are, once more, are perfectly well-defined for acute (even right) A. And
with an understanding of Quadrants I and II, we can spill into Quadrants III and IV (and be-
yond), arriving in the end with the traditional sign assignments and the any-angle structure of the
Complete Triangle.

Of course, this Quadrant-by-Quadrant approach is inefficient, and it certainly isn’t worth spend-
ing an inordinate amount of time on. (Some of the concepts can make for thought-provoking
homework exercises.) After establishing the gist of the process, liberal hand-waving is more than
appropriate. The point is to take the opportunity (if only in passing) to present some sense of the
journey” in the development of Trig, showing it —and Mathematics in general— not as a collection
of pre-fabricated definitions but an ever-lengthening chain of “what if” questions and their answers.

IWhile certainly outside the scope of a course that introduces Trigonometry to students, it’s worth pointing out
here that the journey continues: the Power Series Properties not only form the bridge to the realm in which “sin:”
and “cosi” have meaning, they also pave the way for Euler’s Formula and the polar representation for complex
numbers and all the mathematics that comes from that.
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