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Heron of Alexandria (c. 10 CE – 70 CE) devised this formula for a triangle’s area A in
terms of its edge-lengths a, b, c:

(0.1) 16A2 = (a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c)
Such a formula raises an obvious question: Is there a “dimensionally-enhanced” analogue
for a tetrahedron’s volume in terms of its face-areas? A little thought (and Figure 1)
reveals the equally-obvious answer: No. Simply, a tetrahedron’s shape admits six degrees
of freedom —e.g., one can determine a tetrahedron by its six edges, or by three edges and
three angles at a vertex— so a mere four face-areas cannot account for this amount of
variation. Face-areas do not determine a tetrahedron’s volume.

Figure 1. A “flat” tetrahedron coinciding with a planar square of edge-
length

4
√

3, and a regular tetrahedron of edge-length
√

2, have matching
face-areas (namely, all

√
3/2), but distinct volumes (namely, zero and non-).

Consequently, any hedronometric (face-based) volume formula must incorporate one of
two compromise options: (1) involve more faces(?!), or (2) accommodate fewer tetrahedra.
This note addresses both prospects, presenting (in Section 2) the Pseudo-Heron formula,
which adds the areas of the tetrahedron’s three pseudofaces into the computational mix;
and (in Section 3) the Heron Quartic, a polynomial relating volume and just four (non-
pseudo)face-areas, but only for so-called “perfect” tetrahedra (see the Appendix).
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1. Preliminaries

1.1. Notation. Define the following elements of tetrahedron OABC (see Figure 2):

(1.1)

a := |OA| b := |OB| c := |OC|
d := |BC| e := |CA| f := |AB|

α := 6 BOC β := 6 COA γ := 6 AOB

X := |4BOC| Y := |4COA| Z := |4AOB|
W := |4ABC|

Also, let 6 A, 6 B, etc. —or simply A, B, etc.— indicate the dihedral angles between faces
meeting along edges a, b, etc.

Figure 2. A tetrahedron with edges a, b, c, d, e, f , faces W , X, Y , Z, and
face-angles α, β, γ. Our pseudofaces (not shown) are associated with pairs
of opposite edges: H with {a, d}, J with {b, e}, K with {c, f}.

1.2. Hedronometric Fundamentals. Hedronometry, as the dimensionally-enhanced trig-
onometry of tetrahedra, features a few not-well-known relations that we’ll review here.

Theorem 1 (The Law of Cosines for Adjacent Dihedral Angles; “Law of Adjacent Cosines”).

(1.2) W 2 = X2 + Y 2 + Z2 − 2Y Z cosA− 2ZX cosB − 2XY cosC
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Note that, for a “right-corner” tetrahedron —i.e., one with three mutually-perpendicular
edges meeting at a vertex— the Law of Adjacent Cosines reduces to a hedronometric
Pythagorean relation, which has come to be known by a different name.1

Corollary 1 (de Gua’s Theorem). For a right-corner tetrahedron with hypotenuse-face W ,

(1.3) W 2 = X2 + Y 2 + Z2

Importantly, de Gua’s theorem is generally only one-way: a tetrahedron satisfying (1.3)
need not have a right corner, unless it is also perfect.

We define a pseudoface of a tetrahedron as the quadrilateral shadow of the figure in a
direction perpendicular to a pair of opposite edges, the projections of those edges being the
diagonals of the shadow. Our pseudofaces H, J , K are determined by respective edge-pairs
{a, d}, {b, e}, {c, f}, with areas calculated via a Bretschneider-like formula; for instance,

(1.4) 16H2 = 4a2d2 −
((
b2 + e2

)
−
(
c2 + f2

))2
Pseudofaces are what make hedronometry work, via these remaining relations:

Theorem 2 (The Law of Cosines for Opposite Dihedral Angles; “Law of Opposite Cosines”).

Y 2 + Z2 − 2Y Z cosA = H2 = W 2 +X2 − 2WX cosD

Z2 +X2 − 2ZX cosB = J2 = W 2 + Y 2 − 2WY cosE(1.5)

X2 + Y 2 − 2XY cosC = K2 = W 2 + Z2 − 2WZ cosF

Theorem 3 (The Sum-of-Squares Identity).

(1.6) W 2 +X2 + Y 2 + Z2 = H2 + J2 +K2

Among other things, the sum-of-squares serves as the key dependency that restricts a
tetrahedron’s seven (pseudo)face-areas to only six degrees of freedom, the precise number
needed to determine the tetrahedron’s shape.

We’ll list a couple of consequences of the Laws of Cosines and sum-of-squares. The first
we’ll need later; the second is more of a curiosity (although, see Equation (4.3)).

Corollary 2 (Miscellaneous Formulas).

J2K2 − (WX − Y Z)2 = 2WXY Z (1 + cosA cosD − cosB cosE − cosC cosF )(1.7a)

K2H2 − (WY − ZX)2 = 2WXY Z (1− cosA cosD + cosB cosE − cosC cosF )

H2J2 − (WZ −XY )2 = 2WXY Z (1− cosA cosD − cosB cosE + cosC cosF )

1After Jean Paul de Gua de Malves, who published the result in 1783. Howard Eves [2] notes: “The
theorem, however, had been known to Descartes (1596–1650) and his contemporary J[ohann] Faulhaber
(1580–1635). It is a special case of a more general theorem that [Charles de] Tinseau [d’Amondans] had
presented to the Paris Academy of Sciences in 1774.”
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(H + J +K)(−H + J +K)(H − J +K)(H + J −K)(1.7b)

= (−W +X + Y + Z)(W −X + Y + Z)(W +X − Y + Z)(W +X + Y − Z)

− 8WXY Z(1 + cosA cosD + cosB cosE + cosC cosF )

Finally, we have a counterpart to trigonometry’s vertex-centric area formula:

Theorem 4 (The Vertex-Centric Volume Formula). A tetrahedron’s volume, V , satisfies

(1.8a) 81V 4 = 4X2Y 2Z2
(

1− 2 cosA cosB cosC − cos2A− cos2B − cos2C
)

This is merely a hedronometric re-packaging of the better-known formula that features
edges and face-angles2

36V 2 = a2b2c2
(

1 + 2 cosα cosβ cos γ − cos2 α− cos2 β − cos2 γ
)

(1.8b)

It serves as the launch point for our quest to compute volume from areas alone.

2. The Pseudo-Heron Volume Formula

Using the Law of Opposite Cosines (1.5) to eliminate cosines from the vertex-centric
volume formula (1.8a), we easily derive a Heron-like relation involving volume, face-areas,
and pseudoface-areas. The sum-of-squares helps us wrangle the symbols into a tidy form.

Theorem 5 (The Pseudo-Heron Volume Formula). A tetrahedron’s volume, V , satisfies

81V 4 = H2J2K2 − 2 (WX − Y Z) (WY − ZX) (WZ −XY )(2.1)

−H2 (WX − Y Z)2 − J2 (WY − ZX)2 −K2 (WZ −XY )2

The formula has an immediate corollary for tetrahedra whose faces all agree in area:

Corollary 3. The volume of an equihedral tetrahedron is given by

9V 2 = HJK(2.2)

Apart from that, there isn’t a great deal to say about the Pseudo-Heron volume formula,
except to note some interesting alternative forms. For instance, here it is as a determinant:

81V 4 =

∣∣∣∣∣∣
H2 XY −WZ ZX −WY

XY −WZ J2 Y Z −WX
ZX −WY Y Z −WX K2

∣∣∣∣∣∣(2.3)

One may notice that the cofactors of the diagonal elements are precisely the left-hand
expressions of (1.7a). We can highlight those expressions in the volume formula itself.

81V 4 = −2H2J2K2 − 2 (WX − Y Z) (WY − ZX) (WZ −XY )(2.4)

+H2
(
J2K2 − (WX − Y Z)2

)
+ J2

(
K2H2 − (WY − ZX)2

)
+K2

(
H2J2 − (WZ −XY )2

)
2We can convert from one to another using the Laws of Cosines from spherical trigonometry:

cosα = cosβ cos γ + sinβ sin γ cosA cosA = − cosB cosC + sinB sinC cosα
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Replacing those expressions with their cosined equivalents via (1.7a) ultimately gives this:

4 · 81V 4 =
(
W 2 +X2 − Y 2 − Z2

) (
W 2 −X2 − Y 2 + Z2

) (
W 2 −X2 + Y 2 − Z2

)
(2.5)

+
(
−H2 + J2 +K2

) (
H2 − J2 +K2

) (
H2 + J2 −K2

)
+ 16WXY Z

(
H2 cosA cosD + J2 cosB cosE +K2 cosC cosF

)
The next version of the volume formula appears in other notes by this author.

81V 4 = 2W 2X2Y 2 + 2W 2X2Z2 + 2W 2Y 2Z2 + 2X2Y 2Z2 +H2J2K2(2.6)

−H2
(
W 2X2 + Y 2Z2

)
− J2

(
W 2Y 2 + Z2X2

)
−K2

(
W 2Z2 +X2Y 2

)
It, too, has a determinant form, although it’s not as direct a match as above.

(2.7) −32 · 81V 4 =

∣∣∣∣∣∣∣∣∣∣
4W 2 H2 J2 K2 1
H2 4X2 K2 J2 1
J2 K2 4Y 2 H2 1
K2 J2 H2 4Z2 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
mod

(
W 2 +X2 + Y 2 + Z2

−H2 − J2 −K2

)

3. The Heron Quartic for Perfect Tetrahedra

By restricting our attention to a convenient sub-family of tetrahedra, we can reduce the
degrees of freedom they exhibit to a manageable four, making a Heron-like volume formula
in (non-pseudo)face-areas feasible. But which sub-family deserves our focus?

Discussions of Heron’s formula often reference the fact that the result is equivalent to
de Gua’s theorem (1.3) applied to a (possibly-imaginary) right-corner tetrahedron whose
hypotenuse-face is the target triangle. The details of that argument are left to the reader;
our take-away is the useful characterization of the figures of interest.

Our favored tetrahedral sub-family consists of those figures that serve as hypotenuse-cells
of right-corner simplices in four-dimensional space. A more-accessible characterization may
be that each pair of opposite edges determines a pair of orthogonal vectors. The family of
perfect tetrahedra includes two significant sub-families —the regular (Platonic) tetrahedra
and the right-corner tetrahedra— as well as the volume-maximizing instances of tetrahedra
with given sets of faces-areas (see Theorem 4.3). Some details of perfect tetrahedra appear
in this note’s Appendix.

Now, to derive a relation between a perfect tetrahedron’s volume and its face-areas, “all
we have to do” is eliminate H, J , K from the Pseudo-Heron volume formula (2.1). We
manage this with the help of the sum-of-squares identity (1.6), the Appendix’s hedrono-
metric characterization of perfection (4.2c), and a computer algebra system —such as
Mathematica’s Resultant[] function— to perform the tedious symbol-manipulation.

Unfortunately, volume and face-areas are entangled in a relation with an exceedingly-
unwieldy explicit form. We’ll settle for an only-modestly-unwieldy implicit presentation.
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Theorem 6 (The Heron Quartic for Perfect Tetrahedral Volume). Face-areas W , X, Y ,
Z, and volume V , of a perfect tetrahedron satisfy

0 = 27 U4 + U3
(
σ?σ1 + 8 (4σ1σ2 − 27σ3)

)
(3.1)

− U2
(
σ2?σ2 + 12σ? (3σ1σ3 − 28σ4)− 48

(
9σ23 − 16σ2σ4

) )
+ U

(
σ3?σ3 + 40σ2?σ1σ4 − 576σ?σ3σ4 + 1536σ1σ

2
4

)
− σ4

(
σ2? − 64σ4

)2
where U := 81V 4, and the σi are symmetric polynomials in the squares of the face-areas:3

σ1 := W 2 +X2 + Y 2 + Z2

σ2 := W 2X2 +W 2Y 2 +W 2Z2 +X2Y 2 +X2Z2 + Y 2Z2

σ3 := W 2X2Y 2 +W 2X2Z2 +W 2Y 2Z2 +X2Y 2Z2

σ4 := W 2X2Y 2Z2

σ? := 4σ2 − σ21 = −W 4 −X4 − Y 4 − Z4 + 2W 2X2 + 2W 2Y 2 + · · ·+ 2Y 2Z2

3.1. Too Many Roots. Of course, a quartic polynomial has four roots, so Theorem 6
asserts only that a (non-degenerate) perfect tetrahedron’s volume corresponds to one of
the (positive) roots of its Heron Quartic. There’s always a viable root; this is confirmed by
the fact that the polynomial’s coefficient sequence exhibits an odd number of sign changes,4

so that the Descartes Rule of Signs guarantees an odd number of positive roots.
Somewhat embarrassingly, this author is (so far) unable to declare that there’s always

an unambiguous choice of root among as many as three candidates. The Rule of Signs
doesn’t help, because the sign behavior of the complicated middle coefficients is some-
what inscrutable. Even so, computer sampling across various face-areas has consistently
generated Heron Quartics with three non-positive roots and a single viable positive root.5

3The special grouping σ? hearkens-back to the three-variable elements appearing in Heron’s formula:

16 |4abc|2 = −a4 − b4 − c4 + 2a2b2 + 2b2c2 + 2c2a2

During attempts to simplify the coefficients, σ? seemed to “want” to appear —one may notice the progres-
sion σ?σ1, −σ2

?σ2, σ3
?σ3, −σ4

?σ4 among the coefficients— but whether this speaks to some structure within
the Quartic is unclear. In fact, σ? itself may not be the most-appropriate grouping: as indicated in (3.3),
expressions adjacent to σ? have oh-so-tantalizing factorizations.

σ? + 8WXY Z = (−W +X + Y + Z)(W −X + Y + Z)(W +X − Y + Z)(W +X + Y − Z)

σ? − 8WXY Z = −( W +X + Y + Z)(W +X − Y − Z)(W −X + Y − Z)(W −X − Y + Z)

At least σ? helps reduce some of the coefficient clutter, and we’ll take whatever help we can get: expanded,
the polynomial has over five hundred terms.

4The fourth-power coefficient is positive, while the constant term is negative (or zero, in which case,
the linear term is negative (or zero, in which case, ...)).

5Interestingly, the results were consistent even across face-areas that violated the tetrahedral “Triangle
Inequality” W ≤ X + Y + Z, etc.



HERON-LIKE HEDRONOMETRIC RESULTS FOR TETRAHEDRAL VOLUME 7

The Quartic’s discriminant is worth noting:

(3.2)

(
W 2 −X2

)2 (
W 2 − Y 2

)2 (
W 2 − Z2

)2 (
X2 − Y 2

)2 (
Y 2 − Z2

)2 (
Z2 −X2

)2(
σ4? − 16σ3?σ2 + 288σ2?σ1σ3 − 1152σ?σ4(5σ

2
1 + 4σ2) + 55296σ4(σ1σ3 − 2σ4)

)3
From this, we learn that a tetrahedron’s Heron Quartic has a multiple root if any two
face-areas match (that is, when the figure is “bisohedral”); we show later that those roots
are non-positive. Otherwise, numerical sampling again provides a consistently-positive
discriminant; when, as discussed above, there is at least one positive root and/or one
negative root, we know that all roots are real.

3.2. Obvious degeneracies, and not-so-obvious non-degeneracies. Expressing the
Heron Quartic in terms of symmetric polynomials obscures some obvious zero-volume cases.
Once de-sigma-tized, the Quartic’s constant term factors as

(3.3)

W 2X2Y 2Z2 (W +X + Y + Z)2

(−W +X + Y + Z)2 (W −X + Y + Z)2 (W +X − Y + Z)2 (W +X + Y − Z)2

(W +X − Y − Z)2 (W −X + Y − Z)2 (W −X − Y + Z)2

If any of the factors vanish, then U = 0 is root of the polynomial; in almost-all cases, the
conditions under which a factor vanishes imply a degenerate tetrahedron, so that U = 0 is
the root that corresponds to the volume of that tetrahedron. For example,

• W = 0 and W +X + Y + Z = 0 imply one or four degenerate faces. Volume is zero.
• W = X + Y +Z implies the degenerate case of the tetrahedral analogue of the Triangle

Inequality (eg, W ≤ X + Y + Z), so that the figure is “flat”, with faces X, Y , Z
subdividing face W (via edges meeting at W ’s orthocenter). Volume is zero.
• W+X = Y +Z does not imply a degenerate figure. (Regular tetrahedra fall into this case,

as do doubly-bisohedrals.) On the contrary, the condition implies a non-degenerate figure,
since a perfect “flat” tetrahedron has edges in an orthocentric triangular configuration,
with face-areas related as in the previous case. Volume is non-zero.

3.3. Special Cases. Here’s a brief survey of circumstances under which the Heron Quartic
simplifies. Throughout, we see that at most one root is ever viable for computing volume.

3.3.1. Equihedral Tetrahedron (W = X = Y = Z). A perfect equihedral tetrahedron is
necessarily regular, with four equilateral faces. Its Heron Quartic reduces thusly:

(3.4) 0 = U3
(

27U − 26W 6
)

→ 37V 4 = 26W 6

3.3.2. Trisohedral Tetrahedron (W ;X = Y = Z). A perfect trisohedral tetrahedron is a
pyramid with an equilateral base and congruent isosceles lateral faces. Its Heron Quartic:
(3.5)

0 =
(

27U −W 2
(
W 2 − 9X2

)2)(
U +X2

(
W 2 −X2

)2)3
→ 37V 4 = W 2

(
W 2 − 9X2

)2
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3.3.3. Bisohedral Tetrahedron (W = X;Y, Z). A perfect bisohedral tetrahedron’s Heron
Quartic factors thusly:

0 =
(
U +X2(Y 2 − Z2)2

)2(3.6a)

·
(

27U2 + U(4X2 − Y 2 − Z2)(4X2 − Y 2 − 6Y Z − Z2)(4X2 − Y 2 + 6Y Z − Z2)
−Y 2Z2(2X + Y + Z)2(2X − Y + Z)2(2X + Y − Z)2(2X − Y − Z)2

)
The squared factor is non-zero for a non-degenerate tetrahedron, while the latter quadratic
has a single non-negative root, giving

2 · 37V 4 =− (4X2 − Y 2 − Z2)(4X2 − Y 2 − 6Y Z − Z2)(4X2 − Y 2 + 6Y Z − Z2)(3.6b)

+
(
(4X2 − Y 2 − Z2)2 + 12Y 2Z2

)3/2
In the case of a doubly-bisohedral tetrahedron, with Y = Z, the expression reduces slightly:

37V 4 = 16(2X2 − Y 2)(X2 − 2Y 2)(X2 + Y 2) + 2
(
X4 −X2Y 2 + Y 4

)3/2
(3.6c)

3.3.4. Pythagorean/deGuan Tetrahedron (W 2 = X2 +Y 2 +Z2). In general, a Pythagorean
tetrahedron need not have a right corner; however, a perfect Pythagorean tetrahedron must.
The Heron Quartic factors as

(3.7a) 0 =
(
U − 4X2Y 2Z2

)
( . . . )

which admits only one positive root,6 yielding the relation consistent with (1.8a).

9V 2 = 2XY Z(3.7b)

3.4. Perfect Volume is Maximal. A perfect tetrahedron’s orthogonal opposite edges
seem as though they’re trying to embrace as much space as possible; as it happens, they
succeed (see [3]):

Theorem 7 (Gerber, 1975). A perfect tetrahedron maximizes volume for a given set of
face-areas.

Gerber’s proof of this result —which actually covers arbitrary-dimensional orthocentric
simplices— is fairly involved, but fairly elementary, using vector techniques and basic
calculus. For completeness, we’ll use basic calculus to prove maximality from our hedrono-
metric relations. Given our current inability to guarantee that the Heron Quartic has a
sole viable volume-related root, we’ll state a weaker result:

6For the curious, the “(. . . )” factor is

U3 + U2 ( 16(X6 + Y 6 + Z6) + 30(X4Y 2 +X2Y 4 +X2Y 4 + Y 4Z2 +X2Z4 + Y 2Z4) + 15X2Y 2Z2 )
+ U

(
8( X8(Y 2 − Z2)2 + Y 8(Z2 −X2)2 + Z8(X2 − Y 2)2 ) + 15( X6Y 6 + Y 6Z6 + Z6X6 )

+X2Y 2Z2( X4Y 2 +X4Z2 +X2Y 4 + Y 4Z2 +X2Z4 + Y 2Z4 ) + 30X4Y 4Z4

)
+

(
X2 + Y 2 + Z2) (−XY + Y Z + ZX)2 (XY − Y Z + ZX)2 (XY + Y Z − ZX)2

The coefficients are evidently non-negative, so that this polynomial admits no non-negative roots.
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Theorem 8. A perfect tetrahedron locally maximizes volume for a given set of face-areas.

Proof. Using the sum-of-squares identity to eliminate K2 from the Pseudo-Heron volume
formula (most-conveniently, in the form of (2.6)), we consider the function L(h, j) in vari-
ables h := H2 and j := J2:

L(h, j) = hj(W 2 +X2 + Y 2 + Z2 − h− j)(3.8a)

− h(WX − Y Z)2 − j(WY − ZX)2 + (h+ j)(WZ −XY )2

For fixed W , X, Y , Z, this L covers the non-constant terms of Pseudo-Heron formula; max-
imizing L maximizes volume. Now, the stationary points of L satisfy ∂L/∂h = ∂L/∂j = 0:

0 = Lh = j
(
W 2 +X2 + Y 2 + Z2 − h− j

)
− hj − (WX − Y Z)2 + (WZ −XY )2(3.8b)

= Lj = h
(
W 2 +X2 + Y 2 + Z2 − h− j

)
− hj − (WY − ZX)2 + (WZ −XY )2

One sees, upon replacing H2, J2, and K2, that this condition is equivalent to the hedrono-
metric characterization of perfection (4.2c), which says exactly that perfect tetrahedral
volume is “critical”. To prove that it’s (locally) maximal, we need more derivatives.

(3.8c)
Lhh = −2j = −2J2

Ljj = −2h = −2H2

Lhj = Ljh = −2h− 2j +W 2 +X2 + Y 2 + Z2 = −H2 − J2 +K2

Since Lhh is negative, and since the Hessian determinant,

LhhLjj − L2
hj = (H + J +K)(−H + J +K)(H − J +K)(H + J −K)(3.8d)

is positive (by (4.3)), (local) maximality follows from the Second Derivative Test. �

It’s rather satisfying that the linchpin of this argument is the “Heronic product” (as in
0.1) of pseudoface-areas. This seems to hint at an as-yet-hidden structure in our Heron-like
volume relations, while also testifying to the fundamental influence pseudofaces have over
their tetrahedron’s nature.

4. Appendix: Hedronometric Aspects of Perfection.

A perfect tetrahedron is one in which each edge is orthogonal to its opposite:

(4.1) OA ⊥ BC OB ⊥ CA OC ⊥ AB

A tetrahedron satisfying any two orthogonality conditions satisfies all three. Perfection,
then, reduces the degrees of freedom in the variation of such a tetrahedron from six to four,
which is why face-areas alone suffice to determine a perfect tetrahedron’s shape.

The lore of perfect tetrahedra —also known as “orthocentric” tetrahedra, for their con-
current altitudes— stretches back to the late 1700s, occasionally repeating itself. In 1934,
N. A. Court observed [1]: It is impossible to examine the literature on the orthocentric
tetrahedron without being struck by the fact that the same properties recur time and again,
being rediscovered by various authors quite independently. This author hopes that the
current discussion of hedronometric properties expands scholarship in this (ahem) area.
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There are a few metric characterizations of perfection. For example,

(4.2a) a2 + d2 = b2 + e2 = c2 + f2
(

= 4m2
)

which, here, follows from the Bretschneider-like formula for pseudoface area (1.4) when
those areas reduce to H = ad/2, J = be/2, K = cf/2; the common sum involves m, the
length of a bimedian segment joining the midpoints of two opposite edges. Further, writing
4WXY Z = (−H2 + W 2 + X2)(−H2 + Y 2 + Z2), and replacing d, e, f with

√
4m2 − a2,√

4m2 − b2,
√

4m2 − c2, gives a product symmetric in a, b, c. This implies a (known?)
dihedral characterization of perfection

(4.2b) cosA cosD = cosB cosE = cosC cosF

that, with (1.7a), provides a (new?) purely hedronometric characterization:

J2K2 − (WX − Y Z)2 = K2H2 − (WY − ZX)2 = H2J2 − (WZ −XY )2(4.2c)

( = 2WXY Z(1− cosA cosD) )

In Section 3, we use that last relation to derive the Heron Quartic for perfect tetrahedral
volume (3.1). To prove that perfect volume is (locally) maximal across tetrahedra with
given face areas (Theorem 8), we use the following result:

Lemma 9. A perfect tetrahedron’s pseudoface-areas H, J , K, volume V , and circumradius
r satisfy

(4.3) 36V 2r2 = (H + J +K)(−H + J +K)(H − J +K)(H + J −K)

This follows immediately from substituting ad = 2H, be = 2J , cf = 2K, into a formula
valid for all tetrahedra

2632 V 2r2 = (ad+ be+ cd)(−ad+ be+ cf)(ad− be+ cf)(ad+ be− cf)
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