
SPECTRAL REALIZATIONS OF GRAPHS

B. D. S. “DON” MCCONNELL

1. Introduction

The boundary of the regular hexagon in R2 and the vertex-and-edge skeleton of the regular tetrahe-
dron in R3, as geometric realizations of the combinatorial 6-cycle and complete graph on 4 vertices,
exhibit a significant property: Each automorphism of the graph induces a “rigid” isometry of the
figure. We call such a figure harmonious.1

Figure 1. A pair of harmonious graph realizations (assuming the latter in 3D).

Harmonious realizations can have considerable value as aids to the intuitive understanding of the
graph’s structure, but such realizations are generally elusive. This note explains and explores
a proposition that provides a straightforward way to generate an entire family of harmonious
realizations of any graph:

A matrix whose rows form an orthogonal basis of an eigenspace of a graph’s adjacency matrix
has columns that serve as coordinate vectors of the vertices of an harmonious realization of
the graph. This is a (projection of a) spectral realization.

The hundreds of diagrams in Section 42 illustrate that spectral realizations of graphs with a high
degree of symmetry can have great visual appeal. Or, not: they may exist in arbitrarily-high-
dimensional spaces, or they may appear as an uninspiring jumble of points in one-dimensional
space. In most cases, they collapse vertices and even edges into single points, and are therefore
only very rarely faithful. Nevertheless, spectral realizations can often provide useful starting points
for visualization efforts. (A basic Mathematica recipe for computing (projected) spectral realizations
appears at the end of Section 3.)

Not every harmonious realization of a graph is spectral. For instance, many Archimedean polyhedra
represent harmonious but non-spectral realizations of their skeleta. However, spectral realizations

1This terminology follows [1], and is not to be confused with “harmonious graph” [3].
2See also contributions (to appear) in the Wolfram Demonstrations Project (http://demonstrations.wolfram.com).

As of this writing, the author has prepared “Spectral Realizations of Polyhedral Skeleta” for submission, and is
working on a more general “Spectral Realizations of Graphs”. These interactive, Mathematica-based notebooks are
also available directly from the author.
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have added significance (to be taken up in more detail in another paper) as building blocks of all
possible realizations.

2. Definitions and Notation

For the purposes of this paper, a (combinatorial) graph, G, consists of a finite set of vertices and
a set of edges uniquely defined by adjacency relations between distinct pairs of vertices. (By this
definition, each pair of vertices determine at most one edge, and each edge determines exactly
two endpoint vertices.) A (geometric) realization of G —denoted Ĝ— represents the vertices of
G as (not-necessarily-distinct) points in some Rm; this induces a representation of edges of G as
(not-necessarily-distinct, and very-likely-degenerate) line segments joining pairs of those points.
We formally ignore any two-, three-, or higher-dimensional regions that the edges may seem to
surround.

Our results regarding harmonious and spectral graph realizations amount to gleanings from matrix
algebra. We therefore cast our objects of concern into an appropriate context.

2.1. Matrixification. Fixing an order on the n vertices of G, we encode the graph’s structure in
the (symmetric) n-by-n adjacency matrix, [G], whose (i, j)-th entry counts the number (0 or 1)
of edges joining the i-th vertex to the j-th vertex. We encode the realization Ĝ in the m-by-n
coordinate matrix, [Ĝ], whose i-th column is the coordinate vector of G’s i-th vertex in Rm.

A (vertex) permutation, P , gives rise to an n-by-n permutation matrix, [P ], such that multiplication
of a matrix on the right by [P ] permutes a matrix’s columns in the manner prescribed by P .
(Multiplying on the left by [P ]> permutes the rows in the same manner.)

Not all vertex permutations are graph automorphisms. A graph automorphism must preserve vertex
adjacency; equivalently, permuting the columns and rows of the adjacency matrix in accordance
with an automorphism should preserve that matrix. Thus,

P is an automorphism of G ⇔ [P ]>[G][P ] = [G]

Permutation matrices being orthogonal,3 the above asserts the commutativity of [P ] and [G]:

P is an automorphism of G ⇔ [G][P ] = [P ][G]

We matrixify a linear transformation of Rm in the traditional way, as an m-by-m matrix whose
i-th column is the image of the i-th column of I. Multiplying the coordinate matrix of a realization
on the left by a transformation matrix yields the coordinate matrix of the transformed realization.
The transformation is “rigid” if (and only if) its matrix is orthogonal.

Finally, to apply a translation to all n points of a realization, we add to the coordinate matrix a
translation matrix of the form t1>n , where t is the m-coordinate column vector of the translation,
and where 1n is the “all 1s” column vector of length n.

3[P ]>[P ] = [P ][P ]> = I
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2.2. Harmonious Realizations. We can now define a harmonious realization in terms of matrix
relations:

Definition 1. A realization, Ĝ, of a graph, G, is harmonious if and only if, for each vertex
permutation P ,

(1)
(

[G][P ] = [P ][G]
)

=⇒
(

[Ĝ][P ] = Q[Ĝ] + t1>n
)

for some orthogonal matrix Q and some vector t, both of which depend upon P .

Here, the left-hand side of the implication supposes P is an automorphism of G. The right-hand
side indicates that permuting the vertices of the realization Ĝ can be achieved by applying a rigid
motion —a linear isometry and a translation— to the realization.4 This note’s featured realizations
have no translational component, which allows us focus on a slightly simpler sufficient condition
for harmony:

Corollary 1. A graph realization is harmonious if, for each vertex permutation P ,

(3)
(

[G][P ] = [P ][G]
)

=⇒
(

[Ĝ][P ] = Q[Ĝ]
)

where Q is orthogonal and depends upon P .

3. Harmonious Realizations

The condition (3) for realization harmony leads immediately to some key observations:

Lemma 1. The following are matrices of harmonious realizations of the n-vertex graph G in Rn.

(a) The n-by-n identity matrix, I.
(b) The adjacency matrix [G].
(c) p([G]) for any polynomial p with real coefficients.

Proof. In (3), take Q := [P ]; that is, simply take the isometry to be the one that permutes the
coordinate axes appropriately. Then (3), effectively, becomes the statement “if [P ] commutes with
[G], then [P ] commutes with [Ĝ]”. This implication is trivially true for the [Ĝ] candidates proposed
in (a) and (b), and it is only slightly non-trivially true for the candidate in (c). �

Spectral realizations are special cases of part (c).

4In point of fact, the translation vector t in the definition depends upon [ bG] and Q. The realizations [ bG] and

[ bG][P ] share vertices, hence also share a center that we define and compute as 1
n

[ bG]1n, the average of the coordinate

vectors of the vertices. The realization Q[ bG] + t1>n has center 1
n

“
Q[ bG] + t1>n

”
1n = 1

n
Q[ bG]1n + t . This must

coincide with the original center, and so

(2) t =
1

n
[ bG]1n −

1

n
Q[ bG]1n =

1

n
(I−Q) [ bG]1n

Note that, as a consequence, any realization that requires a translation component to geometrically “realize” an
automorphism is the translate of a realization that requires no such translation. (Translation-free realizations need
not be centered at the origin, however.) Thus, if we are interested in characterizing the shape of an harmonious
realization, we could ignore the translation component in Definition 1.



4 B. D. S. “DON” MCCONNELL

3.1. The Spectral Realizations. Basic results from linear algebra —namely, the Spectral Theo-
rem for Real Symmetric Matrices, and its consequences— provide these facts about the adjacency
matrix of an n-vertex graph G:

• [G]’s spectrum comprises real eigenvalues, which we will denote λ1 > λ2 > λ3 > · · · > λk.
• Rn admits an orthonormal basis of eigenvectors of [G]. We collect such a basis into the

columns of the (orthogonal) n-by-n matrix B.
• Consequently, [G] is diagonalizable by B: [G] = BDB>, where D is a diagonal matrix

whose diagonal entries are the λi.

With the first of these facts in mind, we make an unmotivated definition.

Definition 2. The spectral λi-realization of G has coordinate matrix, Λi, given by

(4) Λi := pi([G]), where pi(x) :=
∏
j 6=i

(x− λj)
(λi − λj)

As polynomials in [G], spectral realizations are necessarily harmonious (specifically such that
Q := [P ] in (3)). Their relation to the eigen-properties of [G] make their coordinate matrices
straightforward to generate and analyze. Before confronting the notion that spectral realizations,
encoded by n-by-n coordinate matrices, naturally reside in Rn, we note in passing two consequences
of the fact that Λi is a λi-eigenmatrix of [G]:

• The result of replacing each vertex with the (vector) sum of its neighbors is equivalent to
the result of scaling the realization by a factor of λi relative to the origin. (This is nothing
more than an interpretation of the equation Λi[G] = λiΛi, where [G] is seen as acting on
Λi to compute the requisite vector sums, and, of course, the λi acts to scale the vectors as
described.) We call a realization with this property eigenic.

• The relation I =
∑

Λi (the unique decomposition of I as the sum of eigenmatrices of [G])
implies that M =

∑
MΛi for any n-column matrix M. Interpreting M on the left-hand

side as a coordinate matrix, and on the right-hand side as transformation matrix applied
to Λi, we have that any realization is the vertex sum5 of uniquely-determined linear images
of spectral realizations.

We can (and, in a separate paper, will) show that any matrix is the sum of (not-necessarily-
uniquely-determined) scaled-orthogonal matrices, so that, indeed, any realization is the
vertex sum of similar images of the spectral realizations.

With that digression completed, we conclude our exposition by confirming the validity of our
proposed means of projecting spectral realizations into smaller-dimensional space.

3.2. Spectral Realizations in Fewer Dimensions. The diagonalizability of [G] implies that,
with B and pi as given in the preceding subsection, Λi = Bpi(D)B>. The matrix pi(D) is diagonal,
with entries pi(λj) that are either 1 (when i = j) or 0 (when i 6= j), so that, in fact,

(5) Λi = BiB>i

5Vertex-wise vector sum, induced by the sum of coordinate matrices.
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where Bi consists of the λi-eigenvector columns from B. (Note that this equality is independent of
the choice of basis vectors that make up Bi (or B).) This factorization leads to the result referenced
in the introduction of this paper:

Theorem 2. Given a matrix Bi whose columns constitute an orthogonal basis of the λi-eigenspace
of [G], the realization of G with coordinate matrix B>i is an isometric image of the spectral λi-
realization of G embedded into Rr, where r is the rank of Bi.

Proof. The significance of the rank r is clear. To show the isometric relation to the spectral
realization, we need only exploit the orthogonality of the columns of Bi —via B>i Bi = I— to show
equality of products of the form M>M for matrices B>i and Λi:

(6) Λi → Λ>i Λi =
(
BiB>i

)> (
BiB>i

)
= BiB>i BiB>i = BiB>i =

(
B>i
)>

B>i ← B>i

�

Figure 2 leverages this Theorem —and Mathematica— to automate the search for spectral realiza-
tions of a graph: compute the eigenvectors of the adjacency matrix, orthogonalize the lot of them,
and collect them according to eigenvalue.

(* Define ’adjMat’ as an adjacency matrix. (Here, it’s the skeleton of the cube.) *)

adjMat = GraphData["CubicalGraph", "AdjacencyMatrix"];

(* Get eigenvalues and eigenvectors. (Be prepared to wait!) *)

{valList, vecList} = Eigensystem[adjMat];

(* Sort values by eigendimension, and remove duplicates *)

vals = Union[Sort[valList, Count[valList, #1] < Count[valList, #2] &]];

(* Orthogonalize all eigenspaces at once. (Another lengthy process!) *)

vecList = Orthogonalize[vecList];

(* Build eigenmatrices from rows corresponding to each eigenvalue *)

matList = Map[vecList[[Flatten[Position[valList, #1]]]] &, vals];

(* Display results: eigenvalue, dimension, coordinate matrix, and plot *)

Table[

Column[{

vals[[k]],

Count[valList, vals[[k]]],

MatrixForm[matList[[k]]],

If[Count[valList, vals[[k]]] < 3,

GraphPlot[adjMat,

VertexCoordinateRules ->

If[Count[valList, vals[[k]]] < 2,

Map[PadRight[#1, 2] &, Transpose[matList[[k]]]],

Transpose[matList[[k]]]]],

GraphPlot3D[adjMat,

VertexCoordinateRules ->

Transpose[matList[[k]][[1 ;; 3]]]]]}], {k, Length[vals]}]

Figure 2. Computationally expensive Mathematica recipe for generating coordi-
nate matrices (and displaying 2- or 3-dimensional plots) of all (projected) spectral
realizations of a graph. (Strategic use of N[] recommended.)

Note that the recipe as given performs eigenanalysis, and subsequent orthogonalization, in ex-
act values on an n-by-n matrix; this can be time- and resource-consuming for anything but the
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smallest of graphs. In practice, converting to floating-point values early on proves prudent. One
can also work realization-by-realization: compute the eigenvalues first, then, for a given value, re-
trieve the eigenvectors via NullSpace[adjMat - val * IdentityMatrix[n]], orthogonalizing an
eigenspace at a time.6 An in-between strategy would be to use Eigensystem[], but to assemble
the eigenmatrices prior to orthogonalization, which would proceed matrix-by-matrix.

Some concluding notes:

• Because a spectral realization (or its sub-dimensional embedding) of a graph requires no
translational component in the isometry corresponding to a given automorphism, it implic-
itly defines a representation of the graph’s automorphism group (or a subgroup thereof) by
a group of linear isometries. This author is not familiar enough with representation theory
to expound on the significance of this connection.

• When the graph G is d-regular —that is, when all vertices have degree d— then [G] admits a
one-dimensional d-eigenspace with the “all 1s” basis vector, 1. (The corresponding spectral
realization —which we call the “dot”— collapses the entire graph into a single point.)
The orthogonality of [G]’s eigenspaces then implies that [Ĝ]1 = 0 for any other spectral
realization Ĝ; consequently, each non-dot spectral realization has its center at the origin.

The skeleta of many familiar polyhedra —in particular, members of the Platonic and
Archimedean families— have this property.

• Although each spectral realization is independent of any choice of orthogonal basis of eigen-
vectors for the adjacency matrix, (obviously) the lower-dimensional realizations provided
Theorem 2 depend entirely upon the chosen basis; that is, there is no apparent “natural”
projection.

Arbitrary eigenvector orthogonalization —as is done in the Mathematica recipe— is un-
likely to provide projected realizations with particularly “pretty” coordinates. Question: Is
there a projection (which we might call “natural”) that maximizes coordinate beauty?7

6The Mathematica-based Demonstrations mentioned before use this strategy, in order to optimize interactivity
with the viewer. On-the-fly nullspace computations (using floating point numbers) tend to be fairly speedy.

7I ask because, as you will see in the coming section, I have generated hundreds of graph realizations whose
coordinates might as well be random. (Of course, they aren’t random.) Going case-by-case to find the pretty
coordinates “by hand” is far too daunting a task to undertake.
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4. Examples

The remainder8 of this paper comprises a survey the spectral realizations of various familiar graphs:
from polygons (which arise from n-cycles), to (the skeleta of) the uniform polyhedra and (so far)
some of their duals, to (the skeleta of) regular polytopes in four or more dimensions.

This survey is a work in progress. Some analysis of complicated figures is
rudimentary and unverified, and should not (yet) be taken as definitive. The reader
is invited to submit additional (and, if necessary, correctional) information.

4.1. Polygons (n-Cycles). A polygon’s skeleton is an n-cycle. Labeling vertices v0, v1, v2, . . . , vn−1

such that vi is adjacent to vi−1 and vi+1 (with index arithmetic performed modulo n), we have that
the (i, j)-th element in the adjacency matrix is 1 if and only if j = i± 1 mod n.



0 1 0 0 0 1
1 0 1 0 0 0

0 1 0
. . . 0 0 0

. . . . . .
0 0 0 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0


The eigenvalues of this matrix are λk := 2 cos (2kπ/n) for k = 0, 1, 2, . . . , bn/2c. The spectral
λk-realization has coordinate matrix of the form

Λk := ck

 cos
(

2πk
n

(i− j)
)  ,where ck =

 1/n, k = 0, n/2

2/n, otherwise

Each of these realizations has dimension at most 2, and has an isometric image in R1 or R2 with
coordinate matrix of the form√

1
n

[
1 1 1 . . . 1

]
for k = 0 (λk = 2)√

1
n

[
1 −1 1 . . . −1

]
for k = n/2 (λk = −2)

√
2
n

[
1 cos (2πk/n) cos (4πk/n) . . . cos (2πk(n− 1)/n)
0 sin (2πk/n) sin (4πk/n) . . . sin (2πk(n− 1)/n)

]
otherwise

8To the extent that almost 95% of something counts as a “remainder”.
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The table records the following information

• λ. The eigenvalue of the corresponding eigenspace; this is also the eigenic scale factor of
the realization. (Also given is the index k corresponding to the use in the above equations.)

• Dim[ension] of the eigenspace. In all cases but the dot, this is equal to the geometric
dimension of the realization. (A dot is geometrically 0-dimensional, but appears as the
realization of the 1-dimensional eigenspace spanned by the “all 1s” vector.)

• #V[ertices] (n). The number of “coalesced” vertices. A faithful realization has n vertices.

• Description. The name of, or other notes about, the apparent figure.

• Schläfli [Symbol] {n/k}. The first number (n) counts the vertices; the second number (k,
the “density” of the polygon) defines the arc —via 2πk/n— travelled along a circumscribed
unit circle from one vertex to the next during an n-step journey.9 When k = 0, there is no
travel, so that all vertices coincide, giving the dot realization.

n-gon (n-cycle)
λ (k) Dim #V: n Description Schläfli

0 (0) 1 1 dot {n/0}

2 cos (2π/n) (1)
{

1, n = 2
2, n 6= 2 n convex regular {n} or {n/1}

2 cos (2kπ/n) (k)
{

1, k = n/2
2, k 6= n/2 lcm(n, k)/k

starry/multi-traced
{n′/k′}

n′ = n/f, k′ = k/f,
f = gcf(n, k)

{n/k}

−2 (n/2) 1 2 stick {n/(n/2)}

Figure 3 shows the spectral realizations of the 15-cycle.

9Our usage follows Grünbaum and others, so that {6/2} is a “multiply traced” triangle; this differs from the usage
described in [4], which treats {6/2} as a compound of two triangles.
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(a) λ = 2 cos 0 = 2 (b) λ = 2 cos 2π
15

(c) λ = 2 cos 4π
15

(d) λ = 2 cos 6π
15

(e) λ = 2 cos 8π
15

(f) λ = 2 cos 10π
15

(g) λ = 2 cos 12π
15

(h) λ = 2 cos 14π
15

Figure 3. The spectral realizations of the 15-cycle. Note that (a), (c), (e), and (h)
are faithful; and (a), (d), (f), and (g) are “multiply-traced”.

4.2. Polyhedra. Here, we investigate realizations of various highly-symmetric polyhedra. Note
that, when we speak of the realization of a polyhedron, we mean more precisely, a realization of the
vertex-and-edge skeleton of that polyhedron. We can consider a face defined abstractly by a cycle
of edges on its “boundary”, but we cannot, in general, give a suitable geometric interpretation of
any region bounded by such a boundary, which may be (extremely) non-planar.

That being said, the organization of our data takes (spectrally irrelevant) face structure into ac-
count. For instance, the triangular-faced icosahedron (uniform polyhedron U22) and the pentagonal-
faced great dodecahedron (U35) have isomorphic skeleta, which give rise to identical spectral real-
izations; however, we list the realization family of U22 separately from that of U35 (see Figures 21
and 33) in order that we can highlight the different face-cycles in each case. When polyhedra are
isomorphic even in face structure —as with the icosahedron and great icosahedron (U53)— they
are listed together, often appearing as spectral counterparts of each other.

The tables record the following information

• λ. The eigenvalue of the associated eigenspace of the adjacency matrix, and the eigenic
scale factor of the realization.

• Dim[ension] of the eigenspace. In all cases but the dot, this is equal to the dimension of
the associate eigenspace. (A dot is geometrically 0-dimensional, but appears as the realiza-
tion of the 1-dimensional eigenspace spanned by the “all 1s” vector.)



10 B. D. S. “DON” MCCONNELL

• Min[imal] Poly[nomial] of the eigenvalue. The rows of the tables are grouped by these
polynomials. (Note that realizations in a group necessarily have the same dimension.)

• #V[ertices] (n). The number of vertices the “apparent figure” —counting coincident ver-
tices as individual elements— with n being the number of vertices in a faithful realization.

• V[ertex] Fig[ure] (a.b.c. . . . ). The cyclic sequence of faces meeting a vertex, without
counting coincident vertices as individual elements.10 The sequence given in the column
heading is for easy reference, and gives only the number of vertices in the faces, ignoring
properties such as density and cycle-decomposition.

Regular faces are listed as Schläfli(-like) symbols that, in non-convex realizations, some-
times denote “retrograde” tracing;11 also, for dot realizations, the symbol (a.b.c)/0 is short-
hand for a

0 .
b
0 .
c
0 , a vertex figure consisting of dot-polygons.

Note: The Schläfli notation is slowly being replaced by “cycle-decomposition notation”,
with component circumradii based on a polyhedral circumradius of 1. (See the Appendix at
the end of this paper.) Unfortunately, CDN has no facility for denoting “retrograde” tracing.

• Description. Information, usually about the “apparent” figure.
Some descriptions identify same-dimensional realizations that share vertices: covert (or,

simply, co) realizations share complete sets of vertices; subvert (or sub) and supvert (or
sup) realizations are such that the former’s vertices form a subset of the latter’s. (In many
cases, the supvert realization’s vertex set consists of the subvert realizations vertices and
the reflections of those vertices through the origin.) Vertex family categorization is not yet
complete (or necessarily reliable).

• (r0, r1, . . . ). (Distance regular graphs only.) Values such that the coordinate matrix of the
spectral realization equals the sum r0A0+r1A1+· · · , where Ad is the “distance-d adjacency
matrix” (with d at most the combinatorial diameter of the graph) whose (i, j)-th entry is 1
if and only if the shortest path joining vertex i to vertex j has combinatorial length d. (By
convention, A0 = I.)

10An “apparent vertex figure” would likely be a useful addition to our data, but this isn’t it.
11For instance, a {5/3} pentagon is a {5/2} pentagon traced “the other way around”.
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4.2.1. The Uniform Polyhedra. This data is preliminary and incomplete.

This subsection documents the spectral realizations of uniform polyhedra, defined by having regular
polygonal faces and identical polyhedron vertices.[5] The data is organized by the standard indices,
from U1 (tetrahedron) to U75 (great dirhombicosidodecahedron), along with the infinite family of
prismatic figures U76 through U80. The Wythoff symbol [6] for each polyhedron is also given.

Uniform polyhedra are inherently harmonious realizations of their skeleta, but not all are eigenic.
In many cases, a skelton’s spectral family includes a “pseudo-uniform” representative evocative of
a classical form, but having non-regular faces; in the tabulated data, such a realization is indicated
by a tilde-topped symbol (e.g., Ũ2, suggesting an approximate U2) and its non-regular faces (unless
represented in cycle-decomposition notation (see Appendix)) by tilde-topped numbers in its vertex
figure (e.g., 3.6̃.6̃). In a handful of instances, the familiar realization is in fact eigenic, but not
spectral, being a 3-dimensional projection of a higher-dimensional form; in the tables, the high-
dimensional representative is indicated with a hat-topped symbol (e.g., Û30, suggesting a super-
dimensional U30 “up there”). The following table summarizes how the various uniform polyhedra
fit (or don’t fit) into the spectral families of their skeleta.12

U1 U4
∼= U5 U3

∼= U7
∼= U15 Uk : 19

Ũ2 Ũ27
∼= Ũ33

∼= Ũ39 Ũk : 27

U6 Ũ9 ≡ Ũ19 Û30
∼= Û41

∼= Û47* Ûk : 7

Ũ8 Ũ11 ≡ (U20) (U38) ∼= (U44) ∼= (U56) (Uk) : 27

Ũ12 U23 ≡ U52 Û36 ≡ Û62 ≡ Û65 All : 80

(U16) Ũ25 ≡ Ũ55 Ũ57 ≡ Ũ69 ≡ Ũ74

Ũ29 Ũ26 ≡ (U66) (U61) ≡ (U67) ≡ (U73)

(U45) Ũ28 ≡ (U68) (U77) ≡ (U79) ≡ (U80)

(U46) Ũ32 ≡ Ũ72 U22 ≡ U53
∼= U34 ≡ U35

(U59) Ũ37 ≡ (U58) Ũ10 ≡ (U17) ∼= Ũ13 ≡ (U14) ∼= Ũ18 ≡ (U21)

(U64) (U40) ≡ (U60) U24 ≡ U54
∼= U49 ≡ U71

∼= U51 ≡ U70

Û75 (U76) ≡ (U78) Ũ31 ≡ Ũ48
∼= (U42) ≡ Ũ43

∼= Ũ50 ≡ (U63)

Uk : classical form is spectral Ũk: pseudo-classical form is spectral
Ûk : classical form is eigenic projection (Uk): classical form is far from spectral
∼= : skeleta are isomorphic ≡ : skeleta and face structures are isomorphic

Figure 4. The 80 uniform polyhedra arranged into 35 classes having isomorphic skeleta.

The figures depict a polyhedron’s skeleton and its the “low” (≤ 3)-dimensional realizations. In each
case, representative face cycles have been highlighted. When a polyhedron’s “classical” form does
not appear in the spectral family, that form is shown separately.

12Of note: Except for the cube, each “classical form is spectral” figure has the property that every edge borders a
triangular or pentagonal face, which must be regular, given the required rotational symmetry. (The cube gets into the
club through connections: its geometric dual —the octahedron— is all triangles.) The symmetry aspect is essential:
pentagonal anti-prisms have this edge property but don’t exhibit three-fold symmetry in their triangular faces; their
classical forms are not spectral.
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U1 Tetrahedron [3|2, 3]
λ Dim Min Poly #V: 4 V Fig: 33 Description (r0, r1, . . . )

3 1 x− 3 1 [3 : 1, 0]3 dot 1
4 (1, 1)

−1 3 x+ 1 4 [3 : α, β]3 U1
1
4 (3,−1)

α = 1/3, β = 2
√

2/3 ≈ 0.9428

(a) Skeleton (b) λ = 3 (c) λ = −1 : U1

Figure 5. The U1 skeleton (a) and its low-dimensional spectral realizations.
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U2 Truncated Tetrahedron [2, 3|3]
λ Dim Min Poly #V: 12 V Fig: 62.3 Description

3 1 x− 3 1 [6 : 1, 0, 0, 0]2.[3 : 1, 0] dot

0 2 x 3 [6 : 0, α, β, 0]2.[3 : 1, 0] triangle

2 3 x− 2 12 [6 : γ, α, δ, 0]2.[3 : ε, ζ] Ũ2

−1 3 x+ 1 4 [6 : ζ, 0, ε, 0]2.[3 : ζ, ε] tetrahedron

−2 3 x+ 2 12 [6 : 0, η, β, θ]2.[3 : 0, 1] 4-tri. compoundex

α =
√

3/2 ≈ 0.8660, β = 1/2, γ =
√

2/3 ≈ 0.4714, δ = 1/6, ε = 2
√

2/3 ≈ 0.9428, ζ = 1/3
η =
√

3/6 ≈ 0.2886, θ =
√

6/3 ≈ 0.8164

(a) Skeleton (b) U2 (c) λ = 3 (d) λ = 0

(e) λ = 2 : Ũ2 (f) λ = −1 (g) λ = −2

Figure 6. The U2 skeleton (a), its classical realization (b), and its low-dimensional
spectral realizations. (The 2-realization is only pseudo-classical: the hexagonal faces
are not regular.)
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U3 Octahemioctahedron [3/2, 3|3] skel ∼= U7, U15

λ Dim Min Poly #V: 12 V Fig: (6.3)2 Description

4 1 x− 4 1 ([6 : 1, 0, 0, 0].[3 : 1, 0])2 dot

2 3 x− 2 12 ([6 : 0, 1, 0, 0].[3 : α, β])2 U3

0 3 x 6 ([6 : β, 0, α, 0].[3 : β, α])2 octahedron

−2 5 x+ 2 12 ([6 : γ, δ, δ].[3 : 0, 1])2 −

α =
√

6/3 ≈ 0.8164, β =
√

3/3 ≈ 0.5773, γ =
√

5/5 ≈ 0.4472, δ =
√

10/5 ≈ 0.6324

(a) Skeleton (b) λ = 4 (c) λ = 2 : U3 (d) λ = 0

Figure 7. The U3 skeleton (a) and its low-dimensional spectral realizations.
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U4 Tetrahemihexahedron [3/2, 3|2] skel ∼= U5

λ Dim Min Poly #V: 6 V Fig: (4.3)2 Description (r0, r1, . . . )

4 1 x− 4 1 ([4 : 1, 0, 0].[3 : 1, 0])2 dot 1
6 (1, 1, 1)

−2 2 x+ 2 3 ([4 : α, 0, β].[3 : 0, 1])2 triangle 1
6 (2,−1, 2)

0 3 x 6 ([4 : 0, 1, 0].[3 : γ, δ, 0])2 U4
1
2 (1, 0,−1)

α = 1
2 , β =

√
3/2 ≈ 0.8660, γ =

√
3/3 ≈ 0.5773, δ =

√
6/3 ≈ 0.8164

(a) Skeleton (b) λ = 4 (c) λ = −2 (d) λ = 0 : U4

Figure 8. The U4 skeleton (a) and its low-dimensional spectral realizations.
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U5 Octahedron [4|2, 3] skel ∼= U4

λ Dim Min Poly #V: 6 V Fig: 34 Description (r0, r1, . . . )

4 1 x− 4 1 [3 : 1, 0]4 dot 1
6 (1, 1, 1)

−2 2 x+ 2 3 [3 : 0, 1]4 triangle 1
6 (2,−1, 2)

0 3 x 6 [3 : α, β]4 U5
1
2 (1, 0,−1)

α =
√

3/3 ≈ 0.5773, β =
√

6/3 ≈ 0.8164

(a) Skeleton (b) λ = 4 (c) λ = −2 (d) λ = 0 : U5

Figure 9. The U5 skeleton (a) and its low-dimensional spectral realizations.
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U6 Cube [3|2, 4]
λ Dim Min Poly #V: 8 V Fig: 43 Description (r0, r1, . . . )

−3 1 x+ 3 2 [4 : 0, 0, 1]3 stick 1
8 (1,−1, 1,−1)

3 1 x− 3 1 [4 : 1, 0, 0]3 dot 1
8 (1, 1, 1, 1)

−1 3 x+ 1 4 [4 : α, β, 0]3 π{3, 3}∗ (subvert) 1
8 (3,−1,−1, 3)

1 3 x− 1 8 [4 : 0, β, α]3 U6 (supvert) 1
8 (3, 1,−1,−3)

α =
√

3/3 ≈ 0.5773, β =
√

6/3 ≈ 0.8164
∗ The Petrie polyhedron based on the tetrahedron.

(a) Skeleton

(b) λ = −3 (c) λ = 3 (d) λ = −1 (e) λ = 1 : U6

Figure 10. The U6 skeleton (a) and its low-dimensional spectral realizations.
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U7 Cuboctahedron [2|3, 4] skel ∼= U3, U15

λ Dim Min Poly #V: 12 V Fig: (3.4)2 Description

4 1 x− 4 1 ([3 : 1, 0].[4 : 1, 0, 0])2 dot

2 3 x− 2 12 ([3 : α, β].[4 : γ, γ, 0])2 U7

0 3 x 6 ([3 : β, α].[4 : 0, 1, 0])2 U4

−2 5 x+ 2 12 ([3 : 0, 1].[4 : δ, ε, ζ])2 -

α = 0.8164, β = 0.5773, γ = 0.7071, δ = 0.3162, ε = 0.5477, ζ = 0.7745

(a) Skeleton (b) λ = 4 (c) λ = 2 : U7 (d) λ = 0

Figure 11. The U7 skeleton (a) and its low-dimensional spectral realizations.
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U8 Truncated Octahedron [2, 4|3]
λ Dim Min Poly #V: 24 V Fig: 62.4 Description

−3 1 x+ 3 2 [6 : 0, 0, 0, 1]2.[4 : 0, 0, 1] stick

3 1 x− 3 1 [6 : 1, 0, 0, 0]2.[4 : 1, 0, 0] dot
√

3 ≈ 1.732 2 x2 − 3 6 [6 : 0, α, β, 0]2.[4 : α, 0, β] - (co I)
−
√

3 ≈ −1.732 [6 : 0, β, α, 0]2.[4 : β, 0, α] - (co I)

1 3 x− 1 6 [6 : ν, ξ, ρ, 0]2.[4 : 0, 1, 0] - (co II)

−1 3 x+ 1 6 [6 : 0, ρ, ξ, ν]2.[4 : 0, 1, 0] - (co II)

1 +
√

2 ≈ 2.414 3 x2 − 2x− 1 24 [6 : γ, δ, ε, 0]2.[4 : ζ, η, 0] Ũ8 (co III)
1−
√

2 ≈ −0.414 [6 : µ, κ, θ, 0]2.[4 : η, ζ, 0] - (co III)

−1 +
√

2 ≈ 0.414 3 x2 + 2x− 1 24 [6 : 0, θ, κ, µ]2.[4 : 0, ζ, η] - (co III)
−1−

√
2 ≈ −2.414 [6 : 0, ε, δ, γ]2.[4 : 0, η, ζ] - (co III)

α = 0.9659, β = 0.2588, γ = 0.7543, δ = 0.6532, ε = 0.0647, ζ = 0.9238,
η = 0.3826, θ = 0.9105, κ = 0.2705, µ = 0.3124, ν = 0.5773, ξ = 0.7071, ρ = 0.4082

(a) Skeleton (b) U8 (c) λ = 3 (d) λ = −3

(e) λ =
√

3 (f) λ = −
√

3 (g) λ = 1 (h) λ = −1

(i) λ = 1 +
√

2 : Ũ8 (j) λ = 1−
√

2 (k) λ = −1 +
√

2 (l) λ = −1−
√

2

Figure 12. The U8 skeleton (a), its classical realization (b), and its low-dimensional
spectral realizations. (The (1 +

√
2)-realization is only pseudo-classical: the hexag-

onal faces are not regular.)
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U9 Truncated Cube [2, 3|4]
U19 Stellated Truncated Hexahedron [2, 3|4/3]

λ Dim Min Poly #V: 24 V Fig: 82.3 Description

3 1 x− 3 1 [8 : 1, 0, 0, 0, 0]2.[3 : 1, 0] dot

1 1 x− 1 2 [8 : 0, 0, αα0, 0, 0]2.[3 : 1, 0] stick
1
2

(
1 +
√

17
)
≈ 2.561 3 x2 − x− 4 24 [8 : β, γ, 0, δ, 0]2.[3 : ε, ζ] Ũ9

1
2

(
1−
√

17
)
≈ −1.561 [8 : η, θ, 0, κ, 0]2.[3 : ζ, ε] Ũ19

2 3 x− 2 12 [8 : 0, µ, νν 0, ξ, 0]2.[3 : ρ, σ] Ũ2

−1 3 x+ 1 4 [8 : 0, τ, υυ0, φ, 0]2.[3 : σ, ρ] U1

−2 5 x+ 2 24 - - (sup II)

0 5 x 12 - - (sub II)

α =
√

2/2 ≈ 0.7071, β ≈ 0.6571, γ ≈ 0.7483, δ ≈ 0.0894, ε ≈ 0.9719, ζ ≈ 0.2352
η ≈ 0.2609, θ ≈ 0.1145, κ ≈ 0.9585, µ ≈ 0.9105, ν ≈ 0.2886, ξ ≈ 0.0647, ρ ≈ 0.9428, σ = 1/3
τ ≈ 0.3124, υ ≈ 0.4082, φ ≈ 0.7543
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(a) Skeleton (b) U9 (c) U19

(d) λ = 3 (e) λ = 1

(f) λ = 1
2
(1 +

√
17) : Ũ9 (g) λ = 1

2
(1−
√

17) : Ũ19 (h) λ = 2 (i) λ = −1

Figure 13. The U9 / U19 skeleton (a), its classical realizations (b, c), and its low-
dimensional spectral realizations. (The 1

2(1 +
√

17)- and 1
2(1−

√
17)-realizations are

only pseudo-classical: their octagonal faces are not regular.)
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U10 Small Rhombicuboctahedron [3, 4|2]
U17 Uniform Great Rhombicuboctahedron [3/2, 4|2] skel ∼= U13, U14, U18, U21

λ Dim Min Poly #V: 24 V Fig: 3.43 Description

4 1 x− 4 1 (3.43)/0 dot

1 2 x− 1 3 - triangle (sub I)

−3 2 x+ 3 6 - 2-tri. compoundex (sup I)

3 3 x− 3 24 3.4̃.4.4̃ Ũ10

1
2

(
−1 +

√
17
)
≈ 1.561 3 x2 + x− 4 12 - -

1
2

(
−1−

√
17
)
≈ −2.561 - -

0 4 x 8 - -

−1 6 x+ 1 24 - -

(a) Skeleton (b) U10 (c) U17

(d) λ = 4 (e) λ = 1 (f) λ = −3

(g) λ = 3 : Ũ10 (h) λ = 1
2
(−1 +

√
17) (i) λ = 1

2
(−1−

√
17)

Figure 14. The U10 / U17 skeleton (a), its classical realizations (b, c), and its low-
dimensional spectral realizations. (The 3-realization is only pseudo-classical: the
triangular faces have non-square neighbors.)
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U11 Great Rhombicuboctahedron [2, 3, 4|]
U20 Great Truncated Cuboctahedron [4/3, 2, 3|]

λ Dim Min Poly #V: 48 V Fig: 4.6.8 Description

3 1 x− 3 1 (4.6.8)/0 dot

−3 1 x+ 3 2 - stick

2 2 x− 2 6 - hexagon (co I)

−2 2 x+ 2 6 - 2-tri. compoundex (co I)

1 +
√

3 ≈ 2.732 3 x2 − 2x− 2 48 4̃.6̃.8̃ Ũ11 (co II, sup II)
1−
√

3 ≈ −0.732 - - (co II)

−1 +
√

3 ≈ 0.732 3 x2 + 2x− 2 24 - - (co III, sub II)
−1−

√
3 ≈ −2.732 - - (co III)

1.813
3 x3 + x2 − 4x− 2 48

- - (sup IV)
−0.470 - - (sup VI)
−2.342 - - (sup III)

2.342
3 x3 − x2 − 4x+ 2 24

- - (sub III)
0.470 - - (sub VI)
−1.813 - - (sub IV)

1 4 x− 1 8 - - (covert II)

−1 4 x+ 1 8 - - (covert II)

0 4 x 6 - -
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(a) Skeleton (b) U11 (c) U20

(d) λ = 3 (e) λ = −3 (f) λ = 2 (g) λ = −2

(h) λ = 1 +
√

3 : Ũ11 (i) λ = 1−
√

3 (j) λ = −1 +
√

3 (k) λ = −1−
√

3

(l) λ = 1.813 (m) λ = −0.470 (n) λ = −2.342 (o) λ = 2.342

(p) λ = 0.470 (q) λ = −1.813

Figure 15. The U11 / U20 skeleton (a), its classical realizations (b,c), and its low-
dimensional spectral realizations. (The (1+

√
3)-realization is only pseudo-classical:

none of its faces are regular.)
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U12 Snub Cube [|2, 3, 4]
λ Dim Min Poly #V: 24 V Fig: 4.34 Description

5 1 x− 5 1 (4.34)/0 dot

−1 +
√

3 ≈ 0.732 2 x2 + 2x− 2 6 - - (co I)
−1−

√
3 ≈ −2.732 - - (co I)

1 +
√

7 ≈ 3.645 3 x2 − 2x− 6 24 4.3̃.3.3̃.3̃ Ũ12

1−
√

7 ≈ −1.645 - -

1.813
3 x3 + x2 − 4x− 2 24

- -
−0.470 - -
−2.342 - -

−1 4 x+ 1 8 - -

(a) Skeleton (b) U12 (c) λ = 5

(d) λ = −1 +
√

3 (e) λ = −1−
√

3 (f) λ = 1 +
√

7 : Ũ12 (g) λ = 1−
√

7

(h) λ = 1.813 (i) λ = −0.470 (j) λ = −2.342

Figure 16. The U12 skeleton (a), its classical realization (b), and its low-
dimensional spectral realizations. (The (1+

√
7)-realization is only pseudo-classical:

the triangular neighbors of the square faces are not regular.)
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U13 Small Cubicuboctahedron [3/2, 4|4]
U14 Great Cubicuboctahedron [3, 4|4/3] skel ∼= U10, U17, U18, U21

λ Dim Min Poly #V: 24 V Fig: 4.8.3.8 Description

4 1 x− 4 1 (4.8.3.8)/0 dot

1 2 x− 1 3 - triangle (sub I)

−3 2 x+ 3 6 - 2-tri. compoundex (sup I)

3 3 x− 3 24 4.8̃.3/2.8̃ Ũ13

1
2

(
−1 +

√
17
)
≈ 1.561 3 x2 + x− 4 12 - -

1
2

(
−1−

√
17
)
≈ −2.561 - -

0 4 x 8 - -

−1 6 x+ 1 24 - -

(a) Skeleton (b) U13 (c) U14

(d) λ = 4 (e) λ = 1 (f) λ = −3

(g) λ = 3 : Ũ13 (h) λ = 1
2
(−1 +

√
17) (i) λ = 1

2
(−1−

√
17)

Figure 17. The U13 / U14 skeleton (a), its classical realizations (b, c), and its low-
dimensional spectral realizations. (The 3-realization is only pseudo-classical: the
octagonal faces are non-regular.)
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U15 Cubohemioctahedron [4/3, 4|3] skel ∼= U3, U7

λ Dim Min Poly #V: 12 V Fig: (4.6)2 Description

4 1 x− 4 1 (4.6)2/0 dot

2 3 x− 2 12 4.6.4/3.6 U15

0 3 x 6 - octahedron

−2 5 x+ 2 12 - x+ 2

(a) Skeleton (b) λ = 4 (c) λ = 2 : U15 (d) λ = 0

Figure 18. The U15 skeleton (a) and its low-dimensional spectral realizations.
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U16 Cubitruncated Cuboctahedron [4/3, 3, 4|]
λ Dim Min Poly #V: 48 V Fig: 6.82 Description

−3 1 x+ 3 2 - stick

3 1 x− 3 1 (6.82)/0 dot

−2.561 3 x2 + x− 4 - - -
1.561 - - -

−1.561 3 x2 − x− 4 - - -
2.561 - - -

−1 4 x+ 1 - - -

1 4 x− 1 - - -

−2 8 x+ 2 - - -

2 8 x− 2 - - -

0 10 x - - -

(a) Skeleton (b) U16 (c) λ = −3 (d) λ = 3

(e) λ = −2.561 (f) λ = −1.561 (g) λ = 1.561 (h) λ = 2.561

Figure 19. The U16 skeleton (a) and its low-dimensional spectral realizations.
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U17 : see U10

U18 Small Rhombihexahedron [3/2, 2, 4|]
U21 Great Rhombihexahedron [4/3, 3/2, 2|] skel ∼= U10, U17, U13, U14

λ Dim Min Poly #V: 24 V Fig: (4.8)2 Description

4 1 x− 4 1 (4.8)2/0 dot

1 2 x− 1 3 - triangle (sub I)

−3 2 x+ 3 6 - 2-tri. cmpndx (sup I)

3 3 x− 3 24 4̃.8̃.4̃/3.8̃ Ũ18

1
2

(
−1 +

√
17
)
≈ 1.561 3 x2 + x− 4 12 - -

1
2

(
−1−

√
17
)
≈ −2.561 - -

0 4 x 8 - -

−1 6 x+ 1 24 - -

(a) Skeleton (b) U18 (c) U21

(d) λ = 4 (e) λ = 1 (f) λ = −3

(g) λ = 3 : Ũ18 (h) λ = 1
2
(−1 +

√
17) (i) λ = 1

2
(−1−

√
17)

Figure 20. The U18 / U21 skeleton (a), its classical realizations (b, c), and its low-
dimensional spectral realizations. (The 3-realization is only pseudo-classical: none
of its faces are regular.)
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U19 : see U9

U20 : see U11

U21 : see U18

U22 Icosahedron [5|2, 3]
U53 Great Icosahedron [5/2|2, 3] skel ∼= U34, U35

λ Dim Min Poly #V: 12 V Fig: 35 Description (r0, r1, . . . )

5 1 x− 5 1 35/0 dot 1
12 (1, 1, 1, 1)

√
5 3 x2 − 5 12 35 U22 (covert) 1

20 (5,
√

5,−
√

5,−5)

−
√

5 3 x2 − 5 12 35 U53 (covert) 1
20 (5,−

√
5,
√

5,−5)

−1 5 x+ 1 6 35 coincident with
5-simplex

1
12 (5,−1,−1, 5)

(a) Skeleton (b) λ = 5 (c) λ =
√

5 : U22 (d) λ = −
√

5 : U53

Figure 21. The U22/U53 skeleton (a) and its low-dimensional spectral realizations.
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U23 Dodecahedron [3|2, 5]
U52 Great Stellated Dodecahedron [3|2, 5/2]

λ Dim Min Poly #V: 20 V Fig: 53 Description (r0, r1, . . . )

3 1 x− 3 1 53/0 dot 1
20 (1, 1, 1, 1, 1, 1)

√
5 3 x2 − 5 20 53 U23 (covert) 1

20 (3,
√

5, 1,−1,−
√

5,−3)

−
√

5 3 x2 − 5 20 (5/2)3 U52 (covert) 1
20 (3,−

√
5, 1,−1,

√
5,−3)

0 4 x 5 - - 1
10 (2, 0,−1, 1, 0,−2)

−2 4 x+ 2 10 - Petersen 1
30 (6,−4, 1, 1,−4, 6)

1 5 x− 1 10 - Petersen 1
20 (3, 1,−1,−1, 1, 3)

(a) Skeleton (b) λ = 3 (c) λ =
√

5 : U23 (d) λ = −
√

5 : U52

Figure 22. The U23 / U52 skeleton (a) and its low-dimensional spectral realizations.
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U24 Icosidodecahedron [2|3, 5]
U54 Great Icosidodecahedron [2|5/2, 3] skel ∼= U49, U71, U51, U70

λ Dim Min Poly #V: 30 V Fig: (3.5)2 Description

4 1 x− 4 1 (3.5)2/0 dot

1 +
√

5 ≈ 3.236 3 x2 − 2x− 4 30 (3.5)2 U24 (co I)
1−
√

5 ≈ −1.236 (3.5/2)2 U54 (co I)

−1 4 x+ 1 5 - - (sup I)

1 4 x− 1 30 - - (sub I)

2 5 x− 2 15 - -

−2 10 x+ 2 30 - -

(a) Skeleton (b) λ = 4 (c) λ = 1 +
√

5 : U24 (d) λ = 1−
√

5 : U54

Figure 23. The U24 / U54 skeleton (a) and its low-dimensional spectral realizations.
(The (1 +

√
5)- and (1−

√
5)-realizations are classical.)
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U25 Truncated Icosahedron [2, 5|3]
U55 Great Truncated Icosahedron [2, 5/2|3]

λ Dim Min Poly #V: 60 V Fig: 5.62 Description

3 1 x− 3 1 (5.62)/0 dot

2.756

3 x4 − 3x3 − 2x2 + 7x+ 1 60

5.6̃2 Ũ25

1.820 5/2.6̃2 Ũ55

−0.138 - -
−1.438 - -

1
2

(
−3 +

√
5
)
≈ −0.381 3 x2 + 3x+ 1 30 - - (co I)

1
2

(
−3−

√
5
)
≈ −2.618 - - (co I)

1
2

(
−1 +

√
17
)
≈ 1.561 4 x2 + x− 4 60 - - (co II)

1
2

(
−1−

√
17
)
≈ −2.561 - - (co II)

−2 4 x+ 2 10 - -
1
2

(
−1 +

√
5
)
≈ 0.618 5 x2 + x− 1 60 - - (co III)

1
2

(
−1−

√
5
)
≈ −1.618 - - (co III)

1
2

(
1 +
√

13
)
≈ 2.302 5 x2 − x− 3 30 - -

1
2

(
1−
√

13
)
≈ −1.302 - -

1 9 x− 1 30 - -
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(a) Skeleton (b) U25 (c) U55

(d) λ = 3 (e) λ = 2.756 : Ũ25 (f) λ = 1.820 : Ũ55 (g) λ = −0.138

(h) λ = −1.438 (i) λ = 1
2
(−3 +

√
5) (j) λ = 1

2
(−3−

√
5)

Figure 24. The U25 / U55 skeleton (a), its classical realizations (b, c), and its
low-dimensional spectral realizations. (The 2.756- and 1.820-realizations are only
pseudo-classical: their hexagonal faces are not regular.)
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U26 Truncated Dodecahedron [2, 3|5]
U66 Great Stellated Truncated Dodecahedron [2, 3|5/3]

λ Dim Min Poly #V: 60 V Fig: 3.102 Description

3 1 x− 3 1 (3.102)/0 dot

2.842

3 x4 − 2x3 − 5x2 + 6x+ 4 60

3.1̃02
Ũ26

1.506 - -
−0.506 - -
−1.842 - -

1
2

(
1 +
√

13
)
≈ 2.302 4 x2 − x− 3 60 - - (co I)

1
2

(
1−
√

13
)
≈ −1.302 - - (co I)

1
2

(
1 +
√

5
)
≈ 1.618 4 x2 − x− 1 30 - - (co II)

1
2

(
1−
√

5
)
≈ −0.618 - - (co II)

1
2

(
1 +
√

17
)
≈ 2.561 5 x2 − x− 4 30 - -

1
2

(
1−
√

17
)
≈ −1.561) - -

0 10 x 30 - -

−2 11 x+ 2 60 - -

(a) Skeleton (b) U26 (c) U66 (d) λ = 3

(e) λ = 2.842 (f) λ = 1.506 (g) λ = −0.506 (h) λ = −1.842

Figure 25. The U26 / U66 skeleton (a), its classical realizations (b, c), and its low-
dimensional spectral realizations. (The 2.842-realization is only pseudo-classical:
the decagonal faces are not regular.)
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U27 Small Rhombicosidodecahedron [3, 5|2] skel ∼= U39, U33

λ Dim Min Poly #V: 60 V Fig: 3.4.5.4 Description

4 1 x− 4 1 (3.4.5.4)/0 dot
1
2

(
5 +
√

5
)
≈ 3.618 3 x2 − 5x+ 5 60 3.4̃.5.4̃ Ũ27 (co I)

1
2

(
5−
√

5
)
≈ 1.381 - - (co I)

√
5 ≈ 2.236 4 x2 − 5 60 - - (co II)

−
√

5 ≈ −2.236 - - (co II)

1 4 x− 1 30 - -

−1 4 x+ 1 5 - -

2.925
5 x3 − x2 − 7x+ 4 30

- -
0.551 - -
−2.477 - -

0 6 x 12 - -
1
2

(
−3 +

√
5
)
≈ −0.381 8 x2 + 3x+ 1 60 - - (co III)

1
2

(
−3−

√
5
)
≈ −2.618 - - (co III)

(a) Skeleton (b) U27

(c) λ = 4 (d) λ = 1
2

`
5 +
√

5
´

: Ũ27 (e) λ = 1
2

`
5−
√

5
´

Figure 26. The U27 skeleton (a) and its low-dimensional spectral realizations. (The
1
2(5 +

√
5)-realization is only pseudo-classical: the triangular faces have non-square

neighbors.)



SPECTRAL REALIZATIONS OF GRAPHS 37

U28 Great Rhombicosidodecahedron [2, 3, 5|]
U68 Great Truncated Icosidodecahedron [5/3, 2, 3|]

λ Dim Min Poly #V: 120 V Fig: 4.6.10 Description

3 1 x− 3 1 (4.6.10)/0 dot

−3 1 x+ 3 2 - stick

2.902

3 x4 − 4x3 + x2 + 6x+ 1 120

4̃.6̃.1̃0 Ũ28 (co I, sup I)
2.175 - - (co I)
−0.175 - - (co I)
−0.902 - - (co I)

0.902

3 x4 + 4x3 + x2 − 6x+ 1 60

- - (co II, sub I)
0.175 - - (co II)
−2.175 - - (co II)
−2.902 - - (co II)

2.545

4 x4 − 6x2 − 2x+ 2 120

- - (sup III)
0.439 - - (sup X)
−0.830 - - (sup VII)
−2.154 - - (sup IV)

2.154

4 x4 − 6x2 + 2x+ 2 60

- - (sub IV)
0.830 - - (sub VII)
−0.439 - - (sub X)
−2.545 - - (sub III)

1.828

5 x5 + 3x4 − 3x3 − 11x2 − x+ 3 120

- - (sup VI)
0.466 - - (sup IX)
−0.684 - - (sup VIII)
−1.888 - -(sup V)
−2.721 - - (sup II)

2.721

5 x5 − 3x4 − 3x3 + 11x2 − x− 3 60

- - (sub II)
1.888 - - (sub V)
0.684 - - (sub VIII)
−0.466 - - (sub IX)
−1.828 - - (sub VI)

1 6 x− 1 12 - - (co III)

−1 6 x+ 1 12 - - (co III)
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(a) Skeleton (b) U28 (c) U68

(d) λ = 3 (e) λ = −3

(f) λ = 2.902 : Ũ28 (g) λ = 2.175 (h) λ = −0.175 (i) λ = −0.902

(j) λ = 0.902 (k) λ = 0.175 (l) λ = −2.175 (m) λ = −2.902

Figure 27. The U28 / U68 skeleton (a), its classical realizations (b, c) and its low-
dimensional spectral realizations. (The 2.902-realization only pseudo-classical: none
of its faces are regular.)
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U29 Snub Dodecahedron [|2, 3, 5]
λ Dim Min Poly #V: 60 V Fig: 5.34 Description

5 1 x− 5 1 (5.34)/0 dot

4.487

3 x4 − 2x3 − 13x2 + 4x+ 19 60

5.3̃.3.3̃.3̃ Ũ29

1.322 - -
−1.251 - -
−2.558 - -

2.716

4 x4 − 8x2 − 2x+ 10 60

- -
1.070 - -
−1.507 - -
−2.280 - -

3.576

5 x5 + x4 − 11x3 − 19x2 − x+ 1 60

- -
0.195 - -
−0.285 - -
−2.135 - -
−2.351 - -

−1 6 x+ 1 12 - -

(a) Skeleton (b) U29 (c) λ = 5

(d) λ = 4.487 : Ũ29 (e) λ = 1.322 (f) λ = −1.251 (g) λ = −2.558

Figure 28. The U29 skeleton (a), its classical realization (b), and its low-
dimensional spectral realizations. (The 4.487-realization is only pseudo-classical:
the triangular neighbors of the pentagonal faces are not regular.)
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U30 Small Ditrigonal Icosidodecahedron [3|5/2, 3] skel ∼= U41, U47

λ Dim Min Poly #V: 20 V Fig: (3.5)3 Description

6 1 x− 6 1 (3.5)3/0 dot

1 4 x− 1 - - -

−3 4 x+ 3 - - -

−2 5 x+ 2 - - -

2 6 x− 2 20 - Û30

(a) Skeleton (b) U30 |λ = 2 (c) λ = 6

Figure 29. The U30 skeleton (a), its classical realization (b), and its low-
dimensional spectral realization. The classical realization is eigenic (and harmo-
nious), but does not represent a spectral realization.
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U31 (6,5,6,3) Small Icosicosidodecahedron
U48 (5,6,3,6) Great Icosicosidodecahedron [3/2, 5|3] skel ∼= U42, U43, U50, U63

λ Dim Min Poly #V: 60 V Fig: 6.5.6.3 Desc

4 1 x− 4 1 (6.5.6.3) /0 dot

−1.945 3

x4 − 5x3 + x2 + 20x− 16

- - -
0.914 3 - - -
2.703 3 60 6̃.5.6̃.3/2 Ũ48

3.327 3 60 6̃.5/2.6̃.3 Ũ31

−
√

6 ≈ −2.449 4 x2 − 6 - - -√
6 ≈ 2.449 - - -

−
√

2 ≈ −1.414 4 x2 − 2 - - -√
2 ≈ 1.414 - - -

1
2

(
1−
√

13
)
≈ −1.302 5 x2 − x− 3 - - -

1
2

(
1 +
√

13
)
≈ 2.302 - - -

0 5 x - - -
1
2

(
−3−

√
5
)
≈ −2.618 8 x2 + 3x+ 1 - - -

1
2

(
−3 +

√
5
)
≈ −0.381 - - -

(a) Skeleton (b) U31 (c) U48 (d) λ = 4

(e) λ = −1.945 (f) λ = 0.914 (g) λ = 2.703 : Ũ48 (h) λ = 3.327 : Ũ31

Figure 30. The U31 / U48 skeleton (a), its classical realization (b), and its
low-dimensional spectral realizations. (The 2.703- and 3.327-realizations are only
pseudo-classical: their hexagonal faces are non-regular.)
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U32 Small Snub Icosicosidodecahedron [|5/2, 3, 3]
U72 Small Retrosnub Icosicosidodecahedron [|3/2, 3/2, 5/2]

λ Dim Min Poly #V: 60 V Fig: 5.35 Desc

6 1 x− 6 1 (5.35)/0 dot

−2.980

3 x4 − x3 − 15x2 − 8x+ 4

60 (5/3, 3̃, 3, 3̃, 3, 3̃)/2 Ũ72

−0.931 - - -
0.313 - - -
4.598 60 5/2, 3̃, 3, 3̃, 3, 3̃ Ũ32

1
2

(
1− 3

√
5
)
≈ −2.854 3 x2 − x− 11 - - -

1
2

(
1 + 3

√
5
)
≈ 3.854 - - -

1
2

(
3−
√

17
)
≈ −0.561 4 x2 − 3x− 2 - - -

1
2

(
3 +
√

17
)
≈ 3.561 - - -

1 4 x− 1 - - -
1
2

(
−3−

√
5
)
≈ −2.618 5 x2 + 3x+ 1 - - -

1
2

(
−3 +

√
5
)
≈ −0.381 - - -

1
2

(
1−
√

13
)
≈ −1.302 5 x2 − x− 3 - - -

1
2

(
1 +
√

13
)
≈ 2.302 - - -

−2 9 x+ 2 - - -
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(a) Skeleton (b) U32 (c) U72

(d) λ = −2.980 : Ũ72 (e) λ = −0.931 (f) λ = 0.313

(g) λ = 4.598 : Ũ32 (h) λ = 1
2

`
1− 3

√
5
´

(i) λ = 1
2

`
1 +
√

5
´

Figure 31. The U32 / U72 skeleton (a), its classical realizations (b,c), and its
low-dimensional spectral realization. (The 4.598- and −2.980-realizations are only
pseudo-classical: the triangular neighbors of their pentagrammic faces are non-
regular.)
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U33 Small Dodecicosidodecahedron [3/2, 5|5] skel ∼= U27, U39

λ Dim Min Poly #V: 60 V Fig: 5.10.3.10 Desc

4 1 x− 4 1 (5.10.3.10)/0 dot
1
2

(
5 +
√

5
)
≈ 3.618 3 x2 − 5x+ 5 60 5.1̃0.3/2.1̃0 Ũ33 (co I)

1
2

(
5−
√

5
)
≈ 1.381 - - (co I)

√
5 ≈ 2.236 4 x2 − 5 60 - - (co II)

−
√

5 ≈ −2.236 - - (co II)

1 4 x− 1 30 - -

−1 4 x+ 1 5 - -

2.925
5 x3 − x2 − 7x+ 4 30

- -
0.551 - -
−2.477 - -

0 6 x 12 - -
1
2

(
−3 +

√
5
)
≈ −0.381 8 x2 + 3x+ 1 60 - - (co III)

1
2

(
−3−

√
5
)
≈ −2.618 - - (co III)

(a) Skeleton (b) U33

(c) λ = 4 (d) λ = 1
2

`
5 +
√

5
´

: Ũ33 (e) λ = 1
2

`
5−
√

5
´

Figure 32. The U33 skeleton (a) and its low-dimensional spectral realizations. (The
1
2(5 +

√
5)-realization is only pseudo-classical: the decagonal faces are non-regular.)
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U34 Small Stellated Dodecahedron [5|2, 5/2]
U35 Great Dodecahedron [5/2|2, 5] skel ∼= U22, U53

λ Dim Min Poly #V: 12 V Fig: 55 Description (r0, r1, . . . )

5 1 x− 5 1 55/0 dot 1
12 (1, 1, 1, 1)

√
5 3 x2 − 5 12 (5/2)5 U35 (covert) 1

20 (5,
√

5,−
√

5,−5)

−
√

5 3 x2 − 5 12 (5/2)5 U34 (covert) 1
20 (5,−

√
5,
√

5,−5)

−1 5 x+ 1 6 - coincident w/
5-simplex

1
12 (5,−1,−1, 5)

(a) Skeleton (b) λ = 5 (c) λ =
√

5 : U35 (d) λ = −
√

5 : U34

Figure 33. The U34 / U35 skeleton (a) and its low-dimensional spectral realizations.
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U36 Dodecadodecahedron [2|5/2, 5] skel ∼= U62, U65

λ Dim Min Poly #V: 30 V Fig: 54 Description

4 1 x− 4 1 54/0 dot

−3 4 x+ 3 - - -

−1 4 x+ 1 - - -

−2 5 x+ 2 - - -

0 5 x - - -

2 11 x− 11 30 - Û36

(a) Skeleton (b) U36 : λ = 2 (c) λ = 4

Figure 34. The U36 skeleton (a), its classical realization (b), and its low-
dimensional spectral realization. The classical realization is eigenic (and harmo-
nious), but does not represent a spectral realization. (See note with Figure 52
regarding U62 and U65 and this phenomenon.)
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U37 Truncated Great Dodecahedron [25/2|5]
U58 Small Stellated Truncated Dodecahedron [25|5/3]

λ Dim Min Poly #V: 60 V Fig: 5.102 Description

3 1 x− 3 1 (5.10.10)/0 dot
1
2

(
−3−

√
5
)
≈ −2.618 3 x2 + 3x+ 1 - - -

1
2

(
−3 +

√
5
)
≈ −0.381 - - -

−
√

5 ≈ −2.236 3 x2 − 5 - - -√
5 ≈ 2.236 - - -

1
2

(
3−
√

5
)
≈ 0.381 3 x2 − 3x+ 1 - - -

1
2

(
3 +
√

5
)
≈ 2.618 60 5.1̃0.1̃0 Ũ37

−2 4 x+ 2 - - -

−1 4 x+ 1 - - -

0 4 x - - -
1
2

(
−1−

√
13
)
≈ −2.302 5 x2 + x− 3 - - -

1
2

(
−1 +

√
13
)
≈ 1.302 - - -

1
2

(
1−
√

13
)
≈ −1.302 5 x2 − x− 3 - - -

1
2

(
1 +
√

13
)
≈ 2.302 - - -

1 9 x− 1 - - -
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(a) Skeleton (b) U37 (c) U58 (d) λ = 3

(e) λ = 1
2

`
−3−

√
5
´

(f) λ = 1
2

`
−3 +

√
5
´

(g) λ = −
√

5 (h) λ =
√

5

(i) λ = 1
2

`
3−
√

5
´

(j) λ = 1
2

`
3 +
√

5
´

: Ũ37

Figure 35. The U37 / U58 skeleton (a), its classical realizations (b, c), and its
low-dimensional spectral realization. (The 1

2

(
3 +
√

5
)
-realization is only pseudo-

classical: the decagonal faces are non-regular.)
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U38 Rhombidodecadodecahedron [5/2, 5|2] skel ∼= U44, U56

λ Dim Min Poly #V: 60 V Fig: (4.5)2 Description

4 1 x− 4 1 (4.5)2/0 dot

−1−
√

5 ≈ −3.236 4 x2 + 2x− 4 - - -
−1 +

√
5 ≈ 1.236 - - -

−2 4 x+ 2 - - -

−3 5 x+ 3 - - -
1
2

(
1−
√

17
)
≈ −1.561 5 x2 − x− 4 - - -

1
2

(
1 +
√

17
)
≈ 2.561 - - -

−1 6 x+ 1 - - -

3 6 x− 3 - - -

0 10 x - - -

1 10 x− 10 - - -

(a) Skeleton (b) U38 (c) λ = 4

Figure 36. The U38 skeleton (a), its classical realization (b), and its low-
dimensional spectral realization.
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U39 Small Rhombidodecahedron [2, 5/2, 5|] skel ∼= U27, U33

λ Dim Min Poly #V: 60 V Fig: (4.10)2 Description

4 1 x− 4 1 (4.10)2/0 dot
1
2

(
5 +
√

5
)
≈ 3.618 3 x2 − 5x+ 5 60 4̃.1̃0.4̃/3.1̃0/9 Ũ39 (co I)

1
2

(
5−
√

5
)
≈ 1.381 - - (co I)

√
5 ≈ 2.236 4 x2 − 5 60 - - (co II)

−
√

5 ≈ −2.236 - - (co II)

1 4 x− 1 30 - -

−1 4 x+ 1 5 - -

2.925
5 x3 − x2 − 7x+ 4 30

- -
0.551 - -
−2.477 - -

0 6 x 12 - -
1
2

(
−3 +

√
5
)
≈ −0.381 8 x2 + 3x+ 1 60 - - (co III)

1
2

(
−3−

√
5
)
≈ −2.618 - - (co III)

(a) Skeleton (b) U39

(c) λ = 4 (d) λ = 1
2

`
5 +
√

5
´

: Ũ39 (e) λ = 1
2

`
5−
√

5
´

Figure 37. The U39 skeleton (a) and its low-dimensional spectral realizations. (The
1
2(5 +

√
5)-realization is only pseudo-classical: none of the faces are regular.)
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U40 Snub Dodecadodecahedron [|2, 5/2, 5]
U60 Inverted Snub Dodecadodecahedron [|5/3, 2, 5]

λ Dim Min Poly #V: 60 V Fig: 32.5.3.5 Description

5 1 x− 5 1 (32.5.3.5)/0 dot

−2.675
4 x3 + 3x2 − x− 5

- - -
−1.539 - - -
1.214 - - -

−1−
√

3 ≈ −2.732 5 x2 + 2x− 2 - - -
−1 +

√
3 ≈ 0.732 - - -

−1.895
5 x3 − 3x2 − 4x+ 10

- - -
1.602 - - -
3.292 - - -

1−
√

7 ≈ −1.645 6 x2 − 2x− 6 - - -
1 +
√

7 ≈ 3.645 - - -

−1 10 x+ 1 - - -

(a) Skeleton (b) U40 (c) U60 (d) λ = 5

Figure 38. The U40 / U60 skeleton (a), its classical realizations (b, c), and its
low-dimensional spectral realization.
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U41 Ditrigonal Dodecadodecahedron [3|5/3, 5] skel ∼= U30, U47

λ Dim Min Poly #V: 20 V Fig: 56 Description

6 1 x− 6 1 56/0 dot

1 4 x− 1 - - -

−3 4 x+ 3 - - -

−2 5 x+ 2 - - -

2 6 x− 2 20 - Û41

(a) Skeleton (b) U41 |λ = 2 (c) λ = 6

Figure 39. The U41 skeleton (a), its classical realization (b), and its low-
dimensional spectral realization. The classical realization is eigenic (and harmo-
nious), but does not represent a spectral realization.
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U42 Great Ditrigonal Dodecicosidodecahedron [3, 5|5/3]
U43 Small Ditrigonal Dodecicosidodecahedron [5/3, 3|5] skel ∼= U31, U48, U50, U63

λ Dim Min Poly #V: 60 V Fig: 3.10.5.10 Desc

4 1 x− 4 1 (3.10.5.10)/0 dot

−1.945 3

x4 − 5x3 + x2 + 20x− 16

- - -
0.914 3 - - -
2.703 3 - - -
3.327 3 60 3.1̃0.5/3.1̃0 Ũ43

−
√

6 ≈ −2.449 4 x2 − 6 - - -√
6 ≈ 2.449 - - -

−
√

2 ≈ −1.414 4 x2 − 2 - - -√
2 ≈ 1.414 - - -

1
2

(
1−
√

13
)
≈ −1.302 5 x2 − x− 3 - - -

1
2

(
1 +
√

13
)
≈ 2.302 - - -

0 5 x - - -
1
2

(
−3−

√
5
)
≈ −2.618 8 x2 + 3x+ 1 - - -

1
2

(
−3 +

√
5
)
≈ −0.381 - - -

(a) Skeleton (b) U42 (c) U43 (d) λ = 4

(e) λ = −1.945 (f) λ = 0.914 (g) λ = 2.703 (h) λ = 3.327 : Ũ43

Figure 40. The U42 / U43 skeleton (a), its classical realizations (b, c), and its low-
dimensional spectral realizations. (The 3.327-realization is only pseudo-classical: its
decagonal faces are non-regular.)
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U44 Icosidodecadodecahedron [5/3, 5|3] skel ∼= U38, U56

λ Dim Min Poly #V: 60 V Fig: (5.6)2 Description

4 1 x− 4 1 (5.6)2/0 dot

−1−
√

5 ≈ −3.236 4 x2 + 2x− 4 - - -
−1 +

√
5 ≈ 1.236 - - -

−2 4 x+ 2 - - -

−3 5 x+ 3 - - -
1
2

(
1−
√

17
)
≈ −1.561 5 x2 − x− 4 - - -

1
2

(
1 +
√

17
)
≈ 2.561 - - -

−1 6 x+ 1 - - -

3 6 x− 3 - - -

0 10 x - - -

1 10 x− 10 - - -

(a) Skeleton (b) U44 (c) λ = 4

Figure 41. The U44 skeleton (a), its classical realization (b), and its low-
dimensional spectral realization.
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U45 Icositruncated Dodecadodecahedron [5/3, 3, 5|]
λ Dim Min Poly #V: 120 V Fig: 6.102 Description

−3 1 x+ 3 2 - stick

3 1 x− 3 1 (6.102)/0 dot

−2 4 x+ 2 - - -

2 4 x− 2 - - -

−1 5 x+ 1 - - -

1 5 x− 1 - - -

−2.675
6 x3 + 3x2 − x− 5

- - -
−1.539 - - -
1.214 - - -

−1.214
6 x3 − 3x2 − x+ 5

- - -
1.539 - - -
2.675 - - -

0 8 x - - -

−1−
√

2 ≈ −2.414 9 x2 + 2x− 1 - - -
−1 +

√
2 ≈ 0.414 - - -

1−
√

2 ≈ −0.414 9 x2 − 2x− 1 - - -
1 +
√

2 ≈ 2.414 - - -

−
√

3 10 x2 − 3 - - -√
3 - - -

(a) Skeleton (b) U45 (c) λ = −3 (d) λ = 3

Figure 42. The U45 skeleton (a), its classical realization (b), and its low-
dimensional spectral realizations.
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U46 Snub Icosidodecadodecahedron [|5/3, 3, 5]
λ Dim Min Poly #V: 60 V Fig: 33.5.3.5 Description

6 1 x− 6 1 (33.5.3.5)/0 dot

−3 4 x+ 3 - - -

1 4 x− 1 - - -

−2 5 x+ 2 - - -

−1.525
6 x3 − 2x2 − 8x− 4

- - -
−0.630 - - -
4.156 - - -

−2
√

2 ≈ −2.828 9 x2 − 8 - - -
2
√

2 ≈ 2.828 - - -

0 10 x - - -

(a) Skeleton (b) U46 (c) λ = 6

Figure 43. The U46 skeleton (a), its classical realization (b), and its low-
dimensional spectral realization.
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U47 Great Ditrigonal Icosidodecahedron [3/2|3, 5] skel ∼= U30, U41

λ Dim Min Poly #V: 20 V Fig: (3.5)3 Description

6 1 x− 6 1 (3.5)3/0 dot

1 4 x− 1 - - -

−3 4 x+ 3 - - -

−2 5 x+ 2 - - -

2 6 x− 2 20 - Û47

(a) Skeleton (b) U47 |λ = 2 (c) λ = 6

Figure 44. The U47 skeleton (a), its classical realization (b), and its low-
dimensional spectral realization. The classical realization is eigenic (and harmo-
nious), but does not represent a spectral realization.
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U48 : see U31

U49 Small Icosihemidodecahedron [3/2, 3|5]
U71 Great Icosihemidodecahedron [3/2, 3|5/3] skel ∼= U24, U54, U51, U70

λ Dim Min Poly #V: 30 V Fig: (3.10)2 Description

4 1 x− 4 1 (3.10)2/0 dot

1 +
√

5 ≈ 3.236 3 x2 − 2x− 4 30 (3.10.3/2.10) U49 (co I)
1−
√

5 ≈ −1.236 (3.10/3)2 U71 (co I)

−1 4 x+ 1 5 - - (sup I)

1 4 x− 1 30 - - (sub I)

2 5 x− 2 15 - -

−2 10 x+ 2 30 - -

(a) Skeleton (b) λ = 4 (c) λ = 1 +
√

5 : U49 (d) λ = 1−
√

5 : U71

Figure 45. The U49 / U71 skeleton (a) and its low-dimensional spectral realizations.
(The (1 +

√
5)- and (1−

√
5)-realizations are classical.)
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U50 Small Dodecicosahedron [3/2, 3, 5|]
U63 Great Dodecicosahedron [5/3, 5/2, 3|] skel ∼= U31, U42, U43, U48

λ Dim Min Poly #V: 60 V Fig: (6.10)2 Desc

4 1 x− 4 1 (6.10)2/0 dot

−1.945 3

x4 − 5x3 + x2 + 20x− 16

- - -
0.914 3 - - -
2.703 3 - - -
3.327 3 60 6.1̃0.6/5.1̃0/9 Ũ50

−
√

6 ≈ −2.449 4 x2 − 6 - - -√
6 ≈ 2.449 - - -

−
√

2 ≈ −1.414 4 x2 − 2 - - -√
2 ≈ 1.414 - - -

1
2

(
1−
√

13
)
≈ −1.302 5 x2 − x− 3 - - -

1
2

(
1 +
√

13
)
≈ 2.302 - - -

0 5 x - - -
1
2

(
−3−

√
5
)
≈ −2.618 8 x2 + 3x+ 1 - - -

1
2

(
−3 +

√
5
)
≈ −0.381 - - -

(a) Skeleton (b) U50 (c) U63 (d) λ = 4

(e) λ = −1.945 (f) λ = 0.914 (g) λ = 2.703 (h) λ = 3.327 : Ũ50

Figure 46. The U50 / U63 skeleton (a), its classical realizations (b, c), and its low-
dimensional spectral realizations. (The 3.327-realization is only pseudo-classical:
none of its faces are regular.)
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U51 Small Dodecahemidodecahedron [5/4, 5|5]
U70 Great Dodecahemidodecahedron [5/3, 5/2|5/3] skel ∼= U24, U54, U49, U71

λ Dim Min Poly #V: 30 V Fig: (5.10)2 Description

4 1 x− 4 1 (5.10)2/0 dot

1 +
√

5 ≈ 3.236 3 x2 − 2x− 4 30 5.10.5/4.10 U51 (co I)
1−
√

5 ≈ −1.236 (5/2.10/3.5/3.10/3 U70 (co I)

−1 4 x+ 1 5 - - (sup I)

1 4 x− 1 30 - - (sub I)

2 5 x− 2 15 - -

−2 10 x+ 2 30 - -

(a) Skeleton (b) λ = 4 (c) λ = 1 +
√

5 : U51 (d) λ = 1−
√

5 : U70

Figure 47. The U51 / U70 skeleton (a) and its low-dimensional spectral realizations.
(The (1 +

√
5)- and (1−

√
5)-realizations are classical.)
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U52 : see U23

U53 : see U22

U54 : see U24

U55 : see U25

U56 Rhombicosahedron [2, 5/2, 3|] skel ∼= U38, U44

λ Dim Min Poly #V: 60 V Fig: (4.6)2 Description

4 1 x− 4 1 (4.6)2/0 dot

−1−
√

5 ≈ −3.236 4 x2 + 2x− 4 - - -
−1 +

√
5 ≈ 1.236 - - -

−2 4 x+ 2 - - -

−3 5 x+ 3 - - -
1
2

(
1−
√

17
)
≈ −1.561 5 x2 − x− 4 - - -

1
2

(
1 +
√

17
)
≈ 2.561 - - -

−1 6 x+ 1 - - -

3 6 x− 3 - - -

0 10 x - - -

1 10 x− 10 - - -

(a) Skeleton (b) U56

(c) λ = 4

Figure 48. The U56 skeleton (a), its classical realization (b), and its low-
dimensional spectral realization.
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U57 Great Snub Icosidodecahedron [|2, 5/2, 3]
U69 Great Inverted Snub Icosidodecahedron [|5/3, 2, 3]
U74 Great Retrosnub Icosidodecahedron [|3/2, 5/3, 2]

λ Dim Min Poly #V: 60 V Fig: 34.5 Desc

5 1 x− 5 1 (34.5)/0 dot

−2.558

3 x4 − 2x3 − 13x2 + 4x+ 19

- - -
−1.251 - - -
1.322 - - -
4.487 - - -

−2.280

4 x4 − 8x2 − 2x+ 10

- - -
−1.507 - - -
1.070 - - -
2.716 - - -

−2.351

5 x5 + x4 − 11x3 − 19x2 − x+ 1

- - -
−2.135 - - -
−0.285 - - -
0.195 - - -
3.576 - - -

−1 6 x+ 1 - - -
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(a) Skeleton (b) U57 (c) U69 (d) U74

(e) λ = 5 (f) λ = −2.558 (g) λ = −1.251 (h) λ = 1.322

(i) λ = 4.487

Figure 49. The U57 / U69 / U74 skeleton (a), its classical realizations (b-d), and
its low-dimensional spectral realizations.
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U58 : see U37

U59 Truncated Dodecadodecahedron [5/3, 2, 5|]
λ Dim Min Poly #V: 120 V Fig: 4.102 Desc

−3 1 x+ 3 1 (4.102)/0 dot

3 1 x− 3 - - -

−2.170
4 x3 + x2 − 3x− 1

- - -
−0.311 - - -
1.481 - - -

−1.481
4 x3 − x2 − 3x+ 1

- - -
0.311 - - -
2.170 - - -

−2.681
5 x3 + x2 − 6x− 4

- - -
−0.642 - - -
2.323 - - -

−2.323
5 x3 − x2 − 6x+ 4

- - -
0.642 - - -
2.681 - - -

−2 5 x+ 2 - - -

2 5 x− 2 - - -

−1−
√

3 ≈ −2.732 6 x2 + 2x− 2 - - -
−1 +

√
3 ≈ 0.732 - - -

1−
√

3 ≈ −0.732 6 x2 − 2x− 2 - - -
1 +
√

3 ≈ 2.732 - - -

−1 10 x+ 1 - - -

0 10 x - - -

1 10 x− 1 - - -

(a) Skeleton (b) U59 (c) λ = −3 (d) λ = 3

Figure 50. The U59 skeleton (a), its classical realization (b), and its low-
dimensional spectral realizations.
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U60 : see U40

U61 Great Dodecicosidodecahedron [5/2, 3|5/3] skel ∼= U67, U73

λ Dim Min Poly #V: 60 V Fig: 3.10.5.10 Desc

4 1 x− 4 1 (3.10.5.10)/0 dot
1
2

(
5−
√

5
)
≈ 1.381 3 x2 − 5x+ 5 - - -

1
2

(
5 +
√

5
)
≈ 3.618 - - -

−
√

5 ≈ −2.236 4 x2 − 5 - - -√
5 ≈ 2.236 - - -

−1 4 x+ 1 - - -

1 4 x− 1 - - -

−2.477
5 x3 − x2 − 7x+ 4

- - -
0.551 - - -
2.925 - - -

0 6 x - - -
1
2

(
−3−

√
5
)
≈ −2.618 8 x2 + 3x+ 1 - - -

1
2

(
−3 +

√
5
)
≈ −0.381 - - -

(a) Skeleton (b) U61 (c) λ = 4 (d) λ = 1
2

`
5−
√

5
´

(e) λ = 1
2

`
5 +
√

5
´

Figure 51. The U61 skeleton (a), its classical realization (b), and its low-
dimensional spectral realizations.



66 B. D. S. “DON” MCCONNELL

U62 Small Dodecahemicosahedron [5/3, 5/2|3]
U65 Great Dodecahemicosahedron [5/4, 5|3] skel ∼= U36

λ Dim Min Poly #V: 30 V Fig: (5.6)2 Description

4 1 x− 4 1 (5.6)2/0 dot

−3 4 x+ 3 - - -

−1 4 x+ 1 - - -

−2 5 x+ 2 - - -

0 5 x - - -

2 11 x− 11 30 - Û62 / Û65

(a) Skeleton (b) U36 (c) U62 : λ = 2 (d) U65 : λ = 2

(e) λ = 4

Figure 52. The U62 / U65 skeleton (a), its classical realizations (b, c), and its low-
dimensional spectral realization. The classical realizations are eigenic (and harmo-
nious), but do not represent a spectral realization. (Evidently, both are projections
of the 11-dimensional 2-realization, five-sided faces becoming either pentagons or
pentagrams; yet the overall resulting edge set is shared by both projections. Note
that U36 is also a projection of the high-dimensional form, but doesn’t have a com-
panion. Either this is quite remarkable, or I’ve missed something important.)
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U63 : see U50

U64 Great Snub Dodecicosidodecahedron [|5/3, 5/2, 3]
λ Dim Min Poly #V: 60 V Fig: 33.5.3.5 Desc

6 1 x− 6 1 (33.5.3.5)/0 dot

−2.743

3 x4 − 2x3 − 15x2 − 4x+ 4

- - -
−0.729 - - -
0.393 - - -
5.078 - - -

1
2

(
−3−

√
5
)
≈ −2.618 4 x2 + 3x+ 1 - - -

1
2

(
−3 +

√
5
)
≈ −0.381 - - -

1
2

(
1−
√

13
)
≈ −1.302 4 x2 − x− 3 - - -

1
2

(
1 +
√

13
)
≈ 2.302 - - -

1
2

(
3−
√

17
)
≈ −0.561 5 x2 − 3x− 2 - - -

1
2

(
3 +
√

17
)
≈ 3.561 - - -

−3 10 x+ 3 - - -

1 11 x− 1 - - -

(a) Skeleton (b) U64 (c) λ = 6 (d) λ = −2.743

(e) λ = −0.729 (f) λ = 0.393 (g) λ = 5.078

Figure 53. The U64 skeleton (a), its classical realization (b), and its low-
dimensional spectral realizations.
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U65 : see U62

U66 : see U26

U67 Uniform Great Rhombicosidodecahedron [5/3, 3|2] skel ∼= U61, U73

λ Dim Min Poly #V: 60 V Fig: 3.10.5.10 Description

4 1 x− 4 1 (3.10.5.10)/0 dot
1
2

(
5−
√

5
)
≈ 1.381 3 x2 − 5x+ 5 - - -

1
2

(
5 +
√

5
)
≈ 3.618 - - -

−
√

5 ≈ −2.236 4 x2 − 5 - - -√
5 ≈ 2.236 - - -

−1 4 x+ 1 - - -

1 4 x− 1 - - -

−2.477
5 x3 − x2 − 7x+ 4

- - -
0.551 - - -
2.925 - - -

0 6 x - - -
1
2

(
−3−

√
5
)
≈ −2.618 8 x2 + 3x+ 1 - - -

1
2

(
−3 +

√
5
)
≈ −0.381 - - -

(a) Skeleton (b) U67

(c) λ = 4 (d) λ = 1
2

`
5−
√

5
´

(e) λ = 1
2

`
5 +
√

5
´

Figure 54. The U67 skeleton (a), its classical realization (b), and its low-
dimensional spectral realizations.
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U68 : see U28

U69 : see U57

U70 : see U51

U71 : see U49

U72 : see U32

U73 Great Rhombidodecahedron [3/2, 5/3, 2|] skel ∼= U61, U67

λ Dim Min Poly #V: 60 V Fig: (4.10)2 Description

4 1 x− 4 1 (4.10)2/0 dot
1
2

(
5−
√

5
)
≈ 1.381 3 x2 − 5x+ 5 - - -

1
2

(
5 +
√

5
)
≈ 3.618 - - -

−
√

5 ≈ −2.236 4 x2 − 5 - - -√
5 ≈ 2.236 - - -

−1 4 x+ 1 - - -

1 4 x− 1 - - -

−2.477
5 x3 − x2 − 7x+ 4

- - -
0.551 - - -
2.925 - - -

0 6 x - - -
1
2

(
−3−

√
5
)
≈ −2.618 8 x2 + 3x+ 1 - - -

1
2

(
−3 +

√
5
)
≈ −0.381 - - -

(a) Skeleton (b) U73

(c) λ = 4 (d) λ = 1
2

`
5−
√

5
´

(e) λ = 1
2

`
5 +
√

5
´

Figure 55. The U73 skeleton (a), its classical realization (b), and its low-
dimensional spectral realizations.
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U74 : see U57

U75 Great Dirhombicosidodecahedron [|3/2, 5/3, 3, 5/2]
λ Dim Min Poly #V: 60 V Fig: (4.5.4.3)2 Desc

8 1 x− 8 1 (4.5.4.3)2/0 dot

2
(
1−
√

5
)
≈ −2.472 3 x2 − 4x− 16 - - -

2
(
1 +
√

5
)
≈ 6.472 - - -

−2 4 x+ 2 - - -

2 4 x− 2 - - -

4 5 x− 4 - - -

−4 10 x+ 4 - - -

0 30 x 60 - Û75

(a) Skeleton (b) U75 | λ = 0

(c) λ = 8 (d) λ = 2
`
1−
√

5
´

(e) λ = 2
`
1 +
√

5
´

Figure 56. The U75 skeleton (a), its classical realization (b), and its low-
dimensional spectral realizations. The classical realization is eigenic (and harmo-
nious), but is not a spectral realization.
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U76 Polygonal (e.g., Pentagonal) Prism [2, 5|2]
U78 Polygrammatic (e.g., Pentagrammatic) Prism [2, 5/2|2]
λ Dim Min Poly #V: 10 V Fig: 5.42 Description

1 1 x− 1 1 (5.42)/0 dot

3 1 x− 3 - - -
1
2

(
−3−

√
5
)
≈ −2.618 2 x2 + 3x+ 1 - - -

1
2

(
−3 +

√
5
)
≈ −0.381 - - -

1
2

(
1−
√

5
)
≈ −0.618 2 x2 − x− 1 - - -

1
2

(
1 +
√

5
)
≈ 1.618 - - -

(a) Skeleton (b) U76 (c) U78

(d) λ = 1 (e) λ = 3

(f) λ = 1
2

`
−3−

√
5
´

(g) λ = 1
2

`
−3 +

√
5
´

(h) λ = 1
2

`
1−
√

5
´

(i) λ = 1
2

`
1 +
√

5
´

Figure 57. The U76 / U78 skeleton (a), its classical realizations (b, c), and its
low-dimensional spectral realizations.
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U77 Polygonal (e.g., Pentagonal) Antiprism [|2, 2, 5]
U79 Polygrammatic (e.g., Pentagrammatic) Antiprism [|2, 2, 5/2]
U80 Polygrammatic (e.g., Pentagrammatic) Crossed Antiprism [|2, 2, 5/3]

λ Dim Min Poly #V: 10 V Fig: 5.33 Description

0 1 x 1 (5.33)/0 dot

4 1 x− 4 - - -

−
√

5 ≈ −2.236 2 x2 − 5 - - -√
5 ≈ 2.236 - - -

−1 4 x+ 1 - - -

(a) Skeleton (b) U77 (c) U79 (d) U80

(e) λ = 0 (f) λ = 4 (g) λ = −
√

5 (h) λ =
√

5

Figure 58. The U77 / U79 / U80 skeleton (a), its classical realizations (b-d), and
its low-dimensional spectral realizations.

U78 : see U76

U79 : see U77

U80 : see U77
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4.2.2. The Uniform-Dual Polyhedra. This data is preliminary and incomplete.

This subsection documents the spectral realizations of combinatorial duals [2] of the uniform poly-
hedra. The data is organized by the standard indices, from dU1 (tetrahedron, its own dual) to dU75

(great dirhombicosidodecacron, the dual of the great dirhombicosidodecahedron), along with the
infinite family of prismatic figures U76 through U80.

In many cases, a skelton’s spectral family includes a representative evocative of a classical form; in
the tabulated data, such a realization is indicated by a tilde-topped symbol (e.g., d̃U2, suggesting
an approximate dU2).

The figures depict a polyhedron’s skeleton and its the “low” (≤ 3)-dimensional realizations (cap-
tioned by the corresponding eigenvalues). In each case, a representative face cycle has been high-
lighted. When a polyhedron’s “classical” form does not appear in the spectral family, that form is
shown separately.
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dU1 = U1

dU2 Triakis Tetrahedron
λ Dim Min Poly #V: 8 Face Description

3
2

(
1 +
√

5
)
≈ 4.854 1 x2 − 3x− 9 2 - -

3
2

(
1−
√

5
)
≈ −1.854 - -

1
2

(
−1 +

√
5
)
≈ 0.618 3 x2 + x− 1 8 - d̃U2

1
2

(
−1−

√
5
)
≈ −1.618 - -

(a) Skeleton (b) dU2 (c) λ = 3
2

`
1 +
√

5
´

(d) λ = 3
2

`
1−
√

5
´

(e) λ = 1
2

`
−1 +

√
5
´

: dU2 (f) λ = 1
2

`
−1−

√
5
´

Figure 59. The dU2 skeleton (a), its classical realization (b), and its spectral realizations.
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dU3 : forthcoming
dU4 : forthcoming

dU5 = U6

dU6 = U5

dU7 Rhombic Dodecahedron
λ Dim Min Poly #V: 14 Face Description

2
√

3 ≈ 3.464 1 x2 − 12 2 - -
2
√

3 ≈ −3.464 - -

2 3 x− 2 14 - dU7 (co I)

−2 3 x+ 2 14 - (co I)

0 6 x 11 - -

(a) Skeleton (b) λ = 2
√

3 (c) λ = −2
√

3 (d) λ = 2

(e) λ = −2 : dU7

Figure 60. The dU7 skeleton (a) and its low-dimensional spectral realizations.
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dU8 Tetrakis Hexahedron
λ Dim Min Poly #V: 14 Face Description

1
2

(
3 +
√

57
)
≈ 5.274 1 x2 − 3x− 12 2 - -

1
2

(
3−
√

57
)
≈ −2.274 - -

−3 1 x+ 3 3 - -

0 2 x 4 - -
1
2

(
1 +
√

17
)
≈ 2.561 3 x2 − x− 4 14 - d̃U8

1
2

(
1−
√

17
)
≈ −1.561 - -

−1 3 x+ 1 5 - -

(a) Skeleton (b) dU8 (c) λ = 1
2

`
3 +
√

57
´

(d) λ = 1
2

`
3−
√

57
´

(e) λ = −3 (f) λ = 0 (g) λ = 1
2

`
1 +
√

17
´

: d̃U8 (h) λ = 1
2

`
1−
√

17
´

(i) λ = −1

Figure 61. The dU8 skeleton (a), its classical realization (b), and its spectral real-
izations. (The 1

2

(
1 +
√

17
)
-realization is only pseudo-classical.)
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dU9 Small Triakis Octahedron
λ Dim Min Poly #V: 14 Face Description

6 1 x− 6 2 - -

2 3 x− 2 14 - d̃U9

0 4 x 9 - -

−2 6 x+ 2 14 - -

(a) Skeleton (b) dU9 (c) λ = 6 (d) λ = 2 : d̃U9

Figure 62. The dU9 skeleton (a), its classical realization (b), and its (d ≤ 3)-
dimensional spectral realizations. (The 2-realization is only pseudo-classical.)
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dU10 Deltoidal Icositetrahedron
λ Dim Min Poly #V: 26 Face Description

√
14 ≈ 3.741 1 x2 − 14 3 - -

−
√

14 ≈ −3.741 - -

2
√

2 ≈ 2.828 3 x2 − 8 26 - d̃U10 (co I)
−2
√

2 ≈ −2.828 - - (co I)
√

2 ≈ 1.414 5 x2 − 2 13 - -
−
√

2 ≈ −1.414 - -

0 8 x 26 - -

(a) Skeleton (b) dU10

(c) λ =
√

14 (d) λ = −
√

14 (e) λ = 2
√

2 : d̃U10 (f) λ = −2
√

2

Figure 63. The dU10 skeleton (a), its classical realization (b), and its low-
dimensional spectral realizations.
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dU11 Disdyakis Dodecahedron
λ Dim Min Poly #V: 26 Face Description

5.848
1 x3 − 26x− 48 3

- -
−2.337 - -
−3.511 - -

4 3 x− 4 26 - d̃U11

0 4 x 15 - -
√

2 ≈ 1.414 5 x2 − 2 13 - -
−
√

2 ≈ −1.414 - -

−2 6 x+ 2 26 - -

(a) Skeleton (b) dU11

(c) λ = 5.848 (d) λ = −2.337 (e) λ = −3.511 (f) λ = 4 : d̃U11

Figure 64. The dU11 skeleton (a), its classical realization (b), and its low-
dimensional spectral realizations.
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dU12 Pentagonal Icositetrahedron
λ Dim Min Poly #V: 38 Face Description

1
2

(
−1 +

√
13
)
≈ 1.302 1 x2 + x− 3 5 - -

1
2

(
−1−

√
13
)
≈ −2.302 - -

1
2

(
−1 +

√
29
)
≈ 3.192 1 x2 − x− 7 3 - -

1
2

(
−1−

√
29
)
≈ −2.192 - -

0 1 x 3 - -

2 2 x− 2 10 - -

−1 +
√

2 ≈ 0.414 2 x2 + 2x− 1 10 - -
−1−

√
2 ≈ −2.414 - -

2.726

3 x5 + x4 − 8x3 − 9x2 + 7x+ 4 38

- -
0.825 - -
−0.428 - -
−1.747 - -
−2.376 - -

1.860
3 x3 − 4x+ 1 17

- -
0.254 - -
−2.114 - -

1 3 x− 1 13 - -
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(a) Skeleton (b) dU12 (c) λ = 1
2

`
−1 +

√
13
´

(d) λ = 1
2

`
−1−

√
13
´

(e) λ = 1
2

`
−1 +

√
29
´

(f) λ = 1
2

`
−1−

√
29
´

(g) λ = 0 (h) λ = 2

(i) λ = −1 +
√

2 (j) λ = −1−
√

2 (k) λ = 2.726 (l) λ = 0.825

(m) λ = −0.428 (n) λ = −1.747 (o) λ = −2.376 (p) λ = 1.860

(q) λ = 0.254 (r) λ = −2.114 (s) λ = 1

Figure 65. The dU12 skeleton (a), its classical realization (b), and its spectral realizations.
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dU13 − dU21 : forthcoming
dU22 = U23

dU23 = U22

dU24 Rhombic Triacontahedron
λ Dim Min Poly #V: 32 Face Description

√
15 ≈ 3.872 1 x2 − 15 2 - - (co I)

−
√

15 ≈ −3.872 - - (co I)

3.077

3 x4 − 10x2 + 5 32

- d̃U24 (co II)
0.726 - - (co II)
−0.726 - - (co II)
−3.077 - - (co II)
√

3 ≈ 1.732 5 x2 − 3 16 - -
−
√

3 ≈ −1.732 - -

0 8 x 21 - -

(a) Skeleton (b) Classical

(c) λ =
√

15 (d) λ = −
√

15

(e) λ = 3.077 : d̃U24 (f) λ = 0.726 (g) λ = −0.726 (h) λ = −3.077

Figure 66. The dU24 skeleton (a), its classical realization (b), and its low-
dimensional spectral realizations.
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dU25 Pentakis Dodecahedron
λ Dim Min Poly #V: 32 Face Description

1
2

(
3 +
√

69
)
≈ 5.653 1 x2 − 3x− 15 2 - -

1
2

(
3−
√

69
)
≈ −2.653 - -

4.392

3 x4 − 15x2 − 20x+ 5 32

- d̃U25

0.215 - -
−2.156 - -
−2.451 - -

0 4 x 21 - -

−2 4 x+ 2 11 - -
1
2

(
1 +
√

13
)
≈ 2.302 5 x2 − x− 3 16 - -

1
2

(
1−
√

13
)
≈ −1.302 - -

(a) Skeleton (b) dU25 (c) λ = 1
2

`
3 +
√

69
´

(d) λ = 1
2

`
3−
√

69
´

(e) λ = 4.392 : d̃U25 (f) λ = 0.215 (g) λ = −2.156 (h) λ = −2.451

Figure 67. The dU25 skeleton (a), its classical realization (b), and its low-
dimensional spectral realizations. (The 4.392-realization is only pseudo-classical.)
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dU26 Triakis Icosahedron
λ Dim Min Poly #V: 32 Face Description

1
2

(
5 +
√

85
)
≈ 7.109 1 x2 − 5x− 15 2 - -

1
2

(
5−
√

85
)
≈ −2.109 - -

4.392

3 x4 − 15x2 − 20x+ 5 32

- -
0.215 - -
−2.156 - -
−2.451 - -

1
2

(
−1 +

√
13
)
≈ 1.302 5 x2 + x− 3 16 - -

1
2

(
−1−

√
13
)
≈ −2.302 - -

0 8 x 21 - -

(a) Skeleton (b) dU26 (c) λ = 1
2

`
5 +
√

85
´

(d) λ = 1
2

`
5−
√

85
´

(e) λ = 4.392 (f) λ = 0.215 (g) λ = −2.156 (h) λ = −2.451

Figure 68. The dU26 skeleton (a), its classical realization (b), and its low-
dimensional spectral realizations.



SPECTRAL REALIZATIONS OF GRAPHS 85

dU27 Deltoidal Hexecontahedron
λ Dim Min Poly #V: 62 Face Description

4 1 x− 4 3 - -
−4 1 x+ 4 3 - -

3.531

3 x4 − 16x2 + 44 62

- - (co I)
1.878 - - (co II)
−1.878 - - (co II)
−3.531 - - (co I)√
3 ≈ 1.732 4 x2 − 3 51 - - (co III)

−
√

3 ≈ −1.732 - - (co III)
1 4 x− 1 16 - -
−1 4 x+ 1 16 - -

1 +
√

3 ≈ 2.732 5 x2 − 2x− 2 31 - -
1−
√

3 ≈ −0.732 - -
−1 +

√
3 ≈ 0.732 5 x2 + 2x− 2 31 - -

−1−
√

3 ≈ −2.732 - -
0 12 x 62 - -

(a) Skeleton (b) dU27 (c) λ = 4 (d) λ = −4

(e) λ = 3.531 (f) λ = 1.878 (g) λ = −1.878 (h) λ = −3.531

Figure 69. The dU27 skeleton (a), its classical realization (b), and its low-
dimensional spectral realizations.
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dU28 Disdyakis Triacontahedron
λ Dim Min Poly #V: 62 Face Description

2 +
√

19 ≈ 6.358 1 x2 − 4x− 15 3 - -
2−
√

19 ≈ −2.358 - -

−4 1 x+ 4 3 - -

5.383

3 x4 − 21x2 − 40x− 16 62

- d̃U28

−0.565 - -
−1.670 - -
−3.147 - -
√

5 ≈ 2.236 3 x2 − 5 62 - -
−
√

5 ≈ −2.236 - -
√

3 ≈ 1.732 4 x2 − 3 51 - - (co I)
−
√

3 ≈ −1.732 - - (co I)

1 4 x− 1 16 - -

−1 4 x+ 1 16 - -

2 +
√

3 ≈ 3.732 5 x2 − 4x+ 1 31 - -
2−
√

3 ≈ 0.267 - -

0 5 x 31 - -

−2 10 x+ 2 31 - -
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(a) Skeleton (b) dU28

(c) λ = 2 +
√

19 (d) λ = 2−
√

19 (e) λ = −4

(f) λ = 5.383 : d̃U28 (g) λ = −0.565 (h) λ = −1.670

(i) λ = −3.147 (j) λ =
√

5 (k) λ = −
√

5

Figure 70. The dU28 skeleton (a) and its low-dimensional spectral realizations.
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dU29 Pentagonal Hexecontahedron
λ Dim Min Poly #V: 92 Face Description

1
2

(
1 +
√

33
)
≈ 3.372 1 x2 − x− 8 3 - -

1
2

(
1−
√

33
)
≈ −2.372 - -

3.144

3

x10 + 2x9 − 17x8

−36x7 + 83x6 + 182x5

−119x4 − 260x3 + 60x2

+80x− 20

92

-
2.342 - -
1.253 - -
0.531 - -
0.260 - -
−0.746 - -
−1.440 - -
−2.220 - -
−2.489 - -
−2.635 - -

2 4 x− 2 81 - -

−2 4 x+ 2 81 - -

1.675
4 x3 − 4x+ 2 41

- -
0.539 - -
−2.214 - -

2.729

5 x6 − 10x4 + 21x2

−4x− 4 76

- -
1.428 - -
0.606 - -
−0.360 - -
−1.806 - -
−2.597 - -

0 5 x 41 - -

1 5 x− 1 31 - -
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(a) Skeleton (b) dU29

(c) λ = 1
2

`
1 +
√

33
´

(d) λ = 1
2

`
1−
√

33
´

(e) λ = 3.144 (f) λ = 2.342 (g) λ = 1.253 (h) λ = 0.531

(i) λ = 0.260 (j) λ = −0.746 (k) λ = −1.440 (l) λ = −2.220

(m) λ = −2.489 (n) λ = −2.635

Figure 71. The dU29 skeleton (a), its classical realization (b), and its low-
dimensional spectral realizations.
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dU29 − dU80 : forthcoming
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4.3. Regular Polytopes in 4 and More Dimensions.

4.3.1. Four-Dimensional Polytopes.

{3, 3, 3} 4-Simplex
λ Dim Min Poly #V: 5 Description

4 1 x− 4 1 dot

−1 4 x+ 1 5 {3, 3, 3}

{3, 3, 4} 4-Cross Polytope (24-cell)
λ Dim Min Poly #V (24) Description

6 1 x− 6 1 dot

−2 3 x+ 2 4 3-simplex

0 4 x 8 {3, 3, 4}

{4, 3, 3} 4-Cube (Hypercube, Tesseract)
λ Dim Min Poly #V: 16 Description

4 1 x− 4 1 dot

2 4 x− 2 16 {4, 3, 3}
0 6 x 8 skel: cubex

−2 4 x+ 2 16 -

−4 1 x+ 4 2 stick

{3, 4, 3} 24-Cell
λ Dim Min Poly #V: 16 Description

8 1 x− 8 1 dot

−4 2 x+ 4 3 triangle

4 4 x− 4 24 {3, 4, 3}
−2 8 x+ 2 24 -

0 9 x 12 -

{5
2 , 5, 3} Small Stellated 120-Cell
{5, 5

2 , 3} Great Grand 120-Cell
λ Dim Min Poly #V: 120 Description

20 1 x− 20 1 dot
...

...
...

...
...
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{5, 3, 3} 120-Cell
{5/2, 3, 3} Great Grand Stellated 120-Cell

λ Dim Min Poly #V: 600 Description

4 1 x− 4 1 dot
1
2

(
1 + 3

√
5
)
≈ 3.854 4 x2 − x− 11 600 {5, 3, 3}

1
2

(
1− 3

√
5
)
≈ −2.854 {5

2 , 3, 3}
−1 8 x+ 1 25 -

−2 8 x+ 2 120 -
1
2

(
5 +
√

5
)
≈ 3.618 9 x2 − 5x+ 5 300 -

1
2

(
5−
√

5
)
≈ 1.381 -

1
2

(
3 +
√

13
)
≈ 3.302 16 x2 − 3x− 1 600 -

1
2

(
3−
√

13
)
≈ −0.302 -

1
2

(
−1 +

√
21
)
≈ 1.791 16 x2 + x− 5 300 -

1
2

(
−1−

√
21
)
≈ −2.791 -

0 18 x 60 -
√

5 ≈ 2.236 24 x2 − 5 300 -
−
√

5 ≈ −2.236 -
1
2

(
1 +
√

5
)
≈ 1.618 24 x2 − x− 1 600 -

1
2

(
1−
√

5
)
≈ −0.618 -

1
2

(
−3 +

√
5
)
≈ −0.381 30 x2 + 3x+ 1 300 -

1
2

(
−3−

√
5
)
≈ −2.618 -

2.925
25 x3 − x2 − 7x+ 4 300

-
−2.477 -
0.551 -

2.518
36 x3 − x2 − 7x+ 8 600

-
−2.696 -
1.178 -

1 40 x− 1 300 -

−1 +
√

2 ≈ 0.414 48 x2 + 2x− 1 600 -
−1−

√
2 ≈ −2.414 -
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{3, 3, 5} 600-Cell
{3, 3, 5

2} Grand 600-Cell

{3, 5, 5
2} Icosahedral 120-Cell

{3, 5
2 , 5} Great Icosahedral 120-Cell

{5, 5
2 , 5} Great 120-Cell

{5
2 , 5,

5
2} Grand Stellated 120-Cell

{5, 3, 5
2} Grand 120-Cell

{5
2 , 3, 5} Great Stellated 120-Cell

λ Dim Min Poly #V: 120 Description

12 1 x− 12 1 dot

3
(
1 +
√

5
)
≈ 9.708 4 x2 − 6x− 36 120 {3, 3, 5} / {5, 5

2 , 5} / {3, 5, 5
2} / {5, 3, 5

2}
3
(
1−
√

5
)
≈ −3.708 {3, 3, 5

2} / {5
2 , 5,

5
2} / {3, 5

2 , 5} / {5
2 , 3, 5}

2
(
1 +
√

5
)
≈ 6.472 9 x2 − 4x− 16 60 -

2
(
1−
√

5
)
≈ −2.472 -

3 16 x− 3 120 -

−3 16 x+ 3 60 -

0 25 x 60 -

−2 36 x+ 2 120 -
Polytopes with different cell structures are combined into a single table.

4.3.2. Higher-Dimensional Regular Polytopes. There are three classes of regular polytopes in 5 or
more dimensions.

{3d−1} d-Simplex
λ Dim Min Poly #V: d+ 1 Description

d 1 x− d 1 dot

−1 d x+ 1 d+ 1 {3d−1}
An exponent indicates repetition; e.g., {34} = {3, 3, 3, 3}.

{3d−2, 4} d-Cross Polytope
λ Dim Min Poly #V: 2d Description

2(d− 1) 1 x− 1 1 dot

0 d x 2d {3d−2, 4}
−2 d− 1 x+ 2 d (d− 1)-simplex

An exponent indicates repetition; e.g., {33, 4} = {3, 3, 3, 4}.
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{4, 3d−2} d-Cube
λ Dim Min Poly #V: 2d Description

d 1 x− d 1 dot

d− 2 d x− (d− 2) 2d {4, 3d−2}
...

...
...

...
...

d− 2i
(
d
i

)
x− (d− 2i) 2d−(i+1 mod2) 1 ≤ i < d

...
...

...
...

...

−d 1 x+ d 2 stick
An exponent indicates repetition; e.g., {4, 33} = {4, 3, 3, 3}.
Justification for these formulas forthcoming.
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5. Appendix: Cycle-Decomposition Notation (experimental)

As suggested in the digression in Section 3.2, any not-necessarily-planar n-gon (such as those
defining a “face” of our polyhedral realizations) is the vertex sum of linear images of the n-cycle’s
spectral realizations; these are the n-gon’s spectral components, one for each k from 0 to bn/2c,
corresponding to the entries in the table of Section 4.1. Also as suggested in that digression, each
such linear image is the sum of (in the case of polygons) two similar, but oppositely-oriented,
regular polygons. For example, any linear image of the pentagram, {5/2}, is the vector sum of two
pentagrams, a {5/2} and an oppositely-oriented {5/3} (which is a {5/2} whose vertices are traced
in reverse order); we call these the Barlotti components of the linear image. These facts suggest a
potentially useful (though not definitive) way of describing the shapes of cycle realizations.

Definition 3. An n-gon, P , has cycle decomposition

(7) [n : α0,
α1

β1
c1, . . . ,

αm
βm

cm] m := bn/2c

Here, αk ≥ βk are the circumradii of the oppositely-oriented {n/k} and {n/(n − k)} Barlotti
components of the k-th spectral component of P ; ck is the cosine of the angle between the vectors
corresponding to the initial vertices in the two Barlotti components. When there is at most one
Barlotti component —that is, when k = 0 or n/2, or when βk is 0— we suppress the fraction
notation (and appended cosine, which we take to be 1):

αk
0
ck → αk

0
0
ck → 0

With this notation, we can retrieve the shape of the k-th spectral component as a planar polygon
with vertices v0, v1, . . . , vn−1 having coordinates

vj :=

 ak cos
(
θk
2 + 2πjk

n

)
+ bk cos

(
− θk

2 −
2πjk
n

)
ak sin

(
θk
2 + 2πjk

n

)
+ bk sin

(
− θk

2 −
2πjk
n

)  , where θk := arccos ck

We cannot retrieve the shape of the original polygon, however, because the notation does not encode
how the spectral components are oriented in (multi-dimensional) space relative to one another.

Observe that, because all non-dot spectral realizations of the n-cycle are centered at the origin,
the dot component (that is, the 0-th spectral component) of a polygon gives the distance from
the polygon’s center13 to the origin. As far as shape is concerned, therefore, this component is
irrelevant; however, it is convenient for mensuration purposes.

Interestingly, the notations —including that 0-th component— for corresponding faces of distinct
spectral realizations of a polyhedron are often related in a most uncomplicated way: they are re-
versals of one another. See, for example, the truncated octahedron (U8 in Section 4.2.1): for each
spectral realization, there is a counterpart (namely, the one with the negative of the first’s eigen-
value) such that the cycle-decomposition notations for the hexagonal faces (and the quadrilateral
faces) are reversed.

13Where the center is defined as the point whose coordinate vector is the average of the coordinate vectors of the
figure’s vertices.
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