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Abstract. Volume, face-areas, and circumradius sometimes determine mul-
tiple —even infinitely-many— non-isometric tetrahedra. Hedronometry pro-

vides a context for unifying and streamlining previous discussions of this fact.

Marcin Mazur [2] posed the following as an open question in 1999:

Mazur’s Question. Is every tetrahedron [...] determined by its volume, the
areas of its faces, and the radius of its circumscribed sphere [“Mazur metrics”]?

Within a year, Petr Lisoněk and Robert Israel [1] gave an explicit example of

two non-isometric tetrahedra sharing volume
√

3/12, face-areas
√

7/4,
√

7/4, 1/2,

1/2, and circumradius (hereafter, simply “radius”)
√

21/6. They refined Mazur’s
Question to ask whether the Mazur metrics determine only finitely many non-
isometric tetrahedra. Later, in 2005, Lu Yang and Zhenbing Zeng [4] exhibited

a continuum of non-isometric tetrahedra sharing volume 441, areas 84
√

3, 63
√

3,
63
√

3, 63
√

3, and radius 43
√

3/6.

So, Mazur’s Question has long had its Answer: an emphatic “No”.

This note does not claim to contribute significant new findings on this topic. It
primarily revisits existing results in the context of hedronometry, the dimensionally-
enhanced trigonometry of tetrahedra. For motivation, consider that the Yang-
Zeng tetrahedra are parameterized by a portion of a cubic curve in R2 with not-
immediately-visible symmetry in not-obviously-meaningful parameters x and y:

(1) 3(1− x)(17− 18y)(1 + 3x+ 3y)− 9x2 − 3x− 37 = 0

We can simplify the cubic rather dramatically with the seemingly-arbitrary substi-
tutions x→ (23814− h)/23814 and y → (23814− j)/23814:

(2) hj(56889− h− j) = 4084868810988

Even better, introducing an auxiliary parameter k such that h+ j + k = 56889 (by
interesting coincidence, the sum of the squares of the areas), we endow the equation
with an impossible-to-miss three-fold symmetry in R3:

(3) hjk = 4084868810988

Best of all, these h, j, k are geometrically meaningful: they are the squares of the
areas of the tetrahedron’s hedronometric “pseudofaces”, suggesting that hedronom-
etry can provide a useful lens through which to view answers to Mazur’s Question.
This note explores that suggestion.

Date: 2 July, 2012. Significantly revised and extended, August, 2019. Revised January, 2020.

1



2 BLUE, THE HEDRONOMETER

1. Preliminaries: Hedronometric Parameters

A tetrahedron is determined trigonometrically by the lengths (and arrangement)
of its six edges. It is determined hedronometrically by the areas (and arrangement)
of its four faces, W , X, Y , Z, and of its three pseudofaces, H, J , K; these seven
areas exhibit only six degrees of freedom, due to the Sum of Squares identity.

(4) W 2 +X2 + Y 2 + Z2 = H2 + J2 +K2

While pseudofaces have a geometric interpretation,1 the reader is welcome to take
their areas as formally defined by the Law of Opposite Cosines:2

Y 2 + Z2 − 2Y Z cosA = H2 = W 2 +X2 − 2WX cosD

Z2 +X2 − 2ZX cosB = J2 = W 2 + Y 2 − 2WY cosE(5)

X2 + Y 2 − 2XY cosC = K2 = W 2 + Z2 − 2WZ cosF

where A is the dihedral angle between faces Y and Z, etc. Incidentally, the Law of
Concurrent Cosines

(6) W 2 = X2 + Y 2 + Z2 − 2Y Z cosA− 2ZX cosB − 2XY cosC

gives rise to the Tetrahedron Inequality

(7) W ≤ X + Y + Z

that, for non-zero areas, admits equality only for degenerate “flat” figures with
sinA = sinB = sinC = 0.

Notation Alert. Almost-every instance we’ll see of areas W , X, Y , Z, H, J ,
K, volume V , and radius r involves an even power (and sometimes a multiplied
constant). To save space and reduce visual clutter, we define:

w := W 2 x := X2 y := Y 2 z := Z2 h := H2 j := J2 k := K2

u := (3V )2 s := (2r)2

Now, a tetrahedron’s volume, V , is given hedronometrically by

(3V )4 = u2 = hjk + 2(wxy + wxz + wyz + xyz)(8)

− h(wx+ yz)− j(wy + zx)− k(wz + xy)

For the radius, r, we start non-hedronometrically with

(9) 16(3V )2(2r)2 = 16us = [ad, be, cf ]

where {a, d}, {b, e}, {c, f} are pairs of opposite edges, and “[ · · · ]” is the versatile
“Heronic product”3

[a, b, c] := (a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c)(10)

= −a4 − b4 − c4 + 2a2b2 + 2b2c2 + 2c2a2

1Projecting a tetrahedron into a plane parallel to a pair of opposite edges, the quadrilateral
whose diagonals are the projections of the chosen edge pair is a “pseudoface” of the figure. For a

typical tetrahedron with faces W , X, Y , Z, we take pseudoface H to be associated with the edges
common to face-pairs {W,X} and {Y, Z}; pseudoface J , with edges common to face-pairs {W,Y }
and {Z,X}; pseudoface K, with edges common to {W,Z} and {X,Y }.

2A catchier name than Law of Cosines of Dihedral Angles along Opposite Edges.
3After Heron of Alexandria’s formula, 1

4

√
[a, b, c], for the area of a triangle with sides a, b, c.
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With the help of these4 relations

ua2 = [H,Y, Z] ub2 = [J, Z,X] uc2 = [K,X, Y ](11)

ud2 = [H,W,X] ue2 = [J,W, Y ] uf2 = [K,W,Z]

we convert (9) to hedronometric form:

su3 =
(
u2 − hjk

)
[H,J,K] + hjk(hj + jk + kh)(12)

+ jk (j − k) ∆(wx|yz) + kh (k − h) ∆(wy|zx) + hj (h− j) ∆(wz|xy)

− h∆(wy|zx) ∆(wz|xy)− j∆(wz|xy) ∆(wx|yz)− k∆(wx|yz) ∆(wy|zx)

with ad hoc notation ∆(wx|yz) := (w − x)(y − z), etc, to save space. Equal-area
faces cause (12) to collapse considerably.

1.1. Mazur + Pseudoface = 1. Mazur metrics alone do not necessarily deter-
mine a tetrahedron, but Mazur metrics and a pseudoface do. This fact will help
with enumerating possible solutions to specific cases of Mazur’s Question.

To see this, suppose that pseudoface H (with square h) is given, and notice that
the Sum of Squares and volume formulas (4) and (8) constitute a quadratic system
in j and k that admits two solutions distinguished by a single ambiguous sign:

2j = −h+ w + x+ y + z − 1
h

(
(w − x)(y − z)±

√
σ
)

2k = −h+ w + x+ y + z + 1
h

(
(w − x)(y − z)±

√
σ
)

(13)

σ := [H,W,X][H,Y, Z]− 4hu2

If σ = 0, then the sign ambiguity is moot and the solutions match.5 If the
product (w − x)(y − z) vanishes, then the sign ambiguity resolves by swapping
pseudofaces J and K in one solution, so that the pair of solutions correspond to
isometric tetrahedra; if the product is non-zero, then substituting j and k into the
radius formula (12) resolves the sign ambiguity. Therefore, we have shown

The “Mazur + Pseudoface = 1” Principle (MP1).
A tetrahedron is uniquely determined (up to isometry) by

its face-areas, volume, circumradius, and one pseudoface-area.

In situations where the number of viable values for a pseudoface-area is limited,
that number serves as an upper bound on the number of viable tetrahedra.

2. Answering Mazur’s Question

In the context of Mazur’s Question, we consider face-areas W , X, Y , Z (and
their squares, w, x, y, z) to be given, so that our tetrahedra are parameterized
by pseudoface-areas H, J , K (equivalently, their squares, h, j, k). Ignoring trivial
degeneracies6 throughout, Mazur (hedrono)metric relations (4), (8), (12) comprise

4Here, a is the edge common to faces Y and Z (and also a diagonal of pseudoface H), etc.
5One can show that H = 1

2
ad sin θH , where θH is the angle between the vectors along edges a

and d. With (11), we have σ = u2a2d2 cos2 θH , so σ = 0 indicates that those edges are orthogonal.
6We assume that volume is strictly positive. This implies that face-areas and radius are also

strictly positive, and that the dihedral angles in (5) and (6) are strictly between 0 and π. These
restrictions, in turn, imply that the squares of the pseudoface-areas are strictly positive. (In

certain contexts, pseudoface-area can be signed, but that’s not a consideration here.)
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a system of three polynomial equations in the three parameters. We can eliminate
j and k from the system —substituting from (13) into (12), and squaring to release
σ from its radical— to arrive at a nonic polynomial whose h-roots correspond to
ostensible pseudoface-areas; this nonic is the sum of a messy sextic and the product
of h with two tame quartics:

ph(w,x, y, z;u; s) :=(14)

h ·
(
δyh

4 − σ3zh
3 + τσ3zh

2 −
(
su3 + ρz

(
4δz − τ2

))
h+ σ1yσ3y

)
·
(
δzh

4 − σ3yh
3 + τσ3yh

2 −
(
su3 + ρy

(
4δy − τ2

))
h+ σ1zσ3z

)

+ δ2x



4h6 σ1x

− h5 ( τ [σ3]⊕ + 6δyδz + 12τσ1x )

+3h4
(
su3 + τ2u2 −

[
δσ1 − τ2(σ3 + σ1x) + δσ3x

]⊕
+ 2τδyδz

)
− h3

(
6τ
(
su3+τ2u2−[δσ1]

⊕
)
−
[
ρxσ3−3ρ

(
3τ3+σ2x

)]⊕
+3σ1yσ1z − 12ρyρz − 8δyδz[δ]⊕ + τ3σ1x + 2σ2

2x

)

+ h2

[
−3δ

(
su3 + ρ

(
4δ − τ2

))
+ 4τ

(
u4 − 3ρ2

)
+σ3

(
2δ − τ2

) (
4δ − τ2

)
− 2δ2x

(
σ3 + 3τ

(
δ − τ2

)) ]⊕

− h

(
[σ3]
⊕
(
su3 + τ2u2 − [δσ1]

⊕
)
− [δσ1σ3]

⊕

−3τ2σ1yσ1z + δ2x (3δyδz + τσ3x)

)

+
(
σ1yσ1z[σ1]⊕ + δ2x

(
su3 + τ2u2 − [δσ1]⊕

) )


The coefficients reduce to manageable size (if minimal scrutability) with the help

of a few more ad hoc assignments7 that we won’t see again:

(15) τ := w + x+ y + z

δx := (w − x)(y − z) ρx := (wx− yz) ( (w + x)− (y + z) )

δy := (w − y)(x− z) ρy := (wy − xz) ( (w + y)− (x+ z) )

δz := (w − z)(x− y) ρz := (wz − xy) ( (w + z)− (x+ y) )

σnm := u2 + nρm σnm := u2 − nρm [f ]⊕ := fy + fz

7Assignments are such that expressions of the form “fy” and “fz” become equal when y = z or
w = x (in which case, the sextic vanishes and the product of quartics becomes a perfect square).

The ρs exhibit cyclic symmetry via x→ y → z → x, but the δs do not. The symbols are not quite

arbitrary, since

[H,W,X][H,Y, Z]− 4hu2 = h4 − 2h3τ + h2
(
τ2 − 2(δy + δz)

)
− 2h(σ1y + σ1z) + δ2x

but their purpose here is primarily to condense the polynomial expression, not to suggest any
structure. (The symbols are subject to various identities, such as δx ≡ δy − δz and τδy ≡ ρx− ρz .

The reader is invited to manipulate the polynomial into a more-enlightening form, especially one

that makes the derivation from (12) self-evident.) Finally, here is an example of the unusual
bracket notation: [δσ3]⊕ = δyσ3y + δzσ3z .
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Polynomial ph has degree 9 in h; degree 8 in each of w, x, y, z; degree 8 in
u; and degree 2 in s. We easily obtain polynomials pj and pk in j and k via the
substitutions h→ j → k and x→ y → z → x.

We can see that, usually, the Mazur metrics admit a finite pool of at most nine
candidate values for each parameter h, j, k; by MP1, they determine at most
nine tetrahedra. Unusually, relations among the metrics can zero-out coefficients
—especially leading or trailing ones— and/or facilitate factoring, reducing a poly-
nomial’s effective degree and draining the candidate pool. In the extreme, a clever
choice of metrics can make all of the coefficients vanish, removing the polynomial
constraints on the corresponding pseudoface-area, and raising the possibility of
infinitely-many Mazur-determined tetrahedra.

We examine a few circumstances, usual and un-, hedronometrically recasting the
results of Lisoněk and Israel [1], Yang and Zeng [4], and Tsai [3] as we go.

2.1. The Scalenohedral Case (distinct W , X, Y , Z).

No, Mr. Mazur. Typically, your metrics determine up to nine scalenohedral
tetrahedra. Exceptionally, up to eight or seven. (Maybe only ever up to six.)

When no face-areas match, the leading coefficients of the h-j-k polynomials
cannot vanish, so none of the polynomials can be identically zero. Thus, there are
as many as nine possible values for h (or j, or k), which implies —by MP1— that
there are only as many as nine resulting tetrahedra (up to isometry). Yang and
Zeng [4] conjectured this bound in 2005, and Tsai [3] first confirmed it in 2015.8

Lisoněk and Israel [1] gave scalenohedral metrics9 that determine six tetrahedra.

(16) (w, x, y, z;u; s) =
(
261
4 , 1254 , 32, 36; 144; 461

)
The corresponding ph has a full roster of nine strictly-positive h-roots, but only six
of them have viable companion j and k values:10

(17) (h, j, k) =



(116 , 37.25 , 11.25 )

( 10.0522 . . . , 76.9446 . . . , 77.5030 . . .)

( 10.9690 . . . , 104.8131 . . . , 48.7178 . . .)

( 45.6808 . . . , 108.7564 . . . , 10.0627 . . .)

( 74.3631 . . . , 9.8696 . . . , 80.2672 . . .)

(114.5688 . . . , 12.0394 . . . , 37.8916 . . .)

Tsai reports that numerical experiments never yielded more than six viable solu-
tions, and conjectures that this is the practical maximum.11

8The 2012 version of this note debuted the h-j-k polynomials, but had not articulated the
“Mazur+Pseudoface=1” Principle nor offered bounds on tetrahedral solutions besides the vague

“finitely many”. This author thanks Ya-Lun Tsai for shaming his complacency with that phrase.
9Rather, they gave the squares of the side-lengths, from which we drive those metrics:

(a2, b2, c2, d2, e2, f2) = (16, 25, 9, 9, 33, 54)
10Somewhat remarkably, each of pj and pk has its own full roster of nine real roots; the

extraneous values are rejected for being merely negative. This author’s experiments have tended

to generate non-real roots in one or more of the polynomials.
11Could this bound have something to do with the “messy sextic”?



6 BLUE, THE HEDRONOMETER

Whatever the practical maximum, we can concoct Mazur metrics that reduce the
theoretical maximum by zeroing-out trailing terms of the h-polynomial. (Zeroing-
out the leading term requires a non-scalenohedral tetrahedron.) For instance,

• With (w, x, y, z, u) = (1, 3, 2, 7, 1), we find that su3 = 26531
25 causes ph’s

constant term to vanish. Ignoring a factor of h, the polynomial’s effec-
tive degree —and thus the upper bound on potential tetrahedra— reduces
to eight. As it happens, this particular polynomial has only four h-roots
corresponding to viable tetrahedra:

(18) (h, j, k) =


(2.2085 . . . , 5.1311 . . . , 5.6603 . . .)

(5.2054 . . . , 4.9004 . . . , 2.8941 . . .)

(7.1474 . . . , 2.8580 . . . , 2.9944 . . .)

(7.2068 . . . , 1.6576 . . . , 4.1355 . . .)

• With (w, x, y, z) = (1, 2, 3, 4), we find u2 = 0.8313 . . . and su3 = 37.7585 . . .
make both the constant and linear coefficients vanish, for a maximum pos-
itive root count of seven. This particular ph has only two positive roots,
for two viable tetrahedra:

(19) (h, j, k) =

{
(0.2342 . . . , 2.6721 . . . , 7.0935 . . .)

(1.4493 . . . , 0.6327 . . . , 7.9178 . . .)

• With (w, x, y) = (1, 2, 3), we find z = 1.4063 . . ., u2 = 0.4268 . . ., su3 =
10.1691 . . . make the constant, linear, and quadratic coefficients vanish, for
a maximum positive root count of six. This particular ph has three positive
roots, but leads to only two viable tetrahedra:

(20) (h, j, k) =

{
(0.3728 . . . , 5.8859 . . . , 1.1475 . . .)

(2.0563 . . . , 5.1990 . . . , 0.1509 . . .)

Alternative values z = 4.4053 . . ., u2 = 0.0753 . . ., su3 = 3.9516 . . . lead to
three positive roots, but only one tetrahedron:

(21) (h, j, k) = (0.5983 . . . , 0.5589 . . . , 9.2479 . . .)

• With (w, x) = (1, 2), it turns out that one of y and z must also be 1 or
2 to zero-out ph’s cubic-and-lower terms; this makes the tetrahedron non-
scalenohedral. Additional experiments have yielded similar results, but it’s
not clear that equal areas must appear.

The final example aside, the number of Mazur-determined scalenohedral tetra-
hedra seems to consistently fall short of the theoretical maximum. Perhaps more-
comprehensive numerical searches can do better; or perhaps there are conjecturable
practical maxima for these cases, too.

2.2. The Bisohedral Case (W , X, Y = Z).

It depends, Mr. Mazur. Typically, your metrics determine at most four
strictly-bisohedral tetrahedra. Exceptionally, the tetrahedron is unique.

When at least two face-areas —here, Y and Z— are equal, the associated pseud-
oface polynomial ph collapses; its “messy sextic” component vanishes, leaving the
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product of h and the square of a quartic. We define p′h as that quartic:

p′h(w, x, y, y;u; s) := h4 (w − y)(x− y)(22)

− h3
(
u2 − 3y(w − x)2

)
+ h2

(
u2 − 3y(w − x)2

)
(w + x+ 2y)

− h
(
su3 + y(w − x)2

(
4(w−y)(x−y)−(w+x+2y)2

))
+

(
u2 − 3y(w − x)2

) (
u2 + y(w − x)2

)
That there are at most four resulting tetrahedra is guaranteed by MP1; this im-
proves Tsai’s bound of eight.12 We can also deduce that fact from the reduced sum
of squares (4) and volume (8) formulas:

(23) h+ j + k = w + x+ 2y u2 = hjk − h(w − y)(x− y)− y(w − x)2

For a particular root h 6= 0, we easily solve these relations for the coefficients of the
Vieta quadratic µ2 − µ(j + k) + jk whose roots are h’s companion j and k values.

2.2.1. The exceptional condition. Observe that the condition u2 = 3y(w−x)2 causes
most of p′h to vanish. Discarding a factor of h, we can express what remains as

p?h(· · · ) := h3(w − y)(x− y) − y(w − x)2
(
3su− 8y(w + x)− (w − x)2

)
(24)

For Y distinct from W and X, this has at most one positive root, an explicit
cube root. The condition has restricted the number of strictly-bisohedral Mazur-
determined tetrahedra to at most one, dramatically improving Tsai’s bound of
six.13 Moreover, non-degeneracy requires that the long factor of the polynomial’s
constant term be non-zero; to ensure a positive root, the factor must have the same
sign as the leading coefficient. This provides a necessary condition on the viability
of proposed Mazur metrics.

Contrariwise, taking Y = W (similarly, Y = X), we have a clear path to zeroing-
out the entire h-polynomial. The resulting tetrahedron is trisohedral, a case con-
sidered in §2.4.

2.3. The Doubly-Bisohedral Case (W = X and Y = Z).

No, Mr. Mazur. Your metrics determine up to four (but
perhaps only up to three) strictly-doubly-bisohedral tetrahedra.

When two pairs of face-areas match —here, W = X and Y = Z— the corre-
sponding pseudoface quartic (22) reduces as follows:

(25) p′h(x, x, y, y;u, s) = h4(x− y)2 − h3u2 + 2h2u2(x+ y)− hsu3 + u4

This form tells us nothing of significance that its merely-bisohedral counterpart
didn’t, although here we have no multiple-coefficient-zeroing “exceptional case”.14

(When x = y, the tetrahedron is equihedral, a case covered in §2.5.) Thus, we
can say only that Mazur metrics determine up to four strictly-doubly-bisohedral
tetrahedra.

12It’s worth noting that pj and pk (identical here) have degree eight. If not for MP1 and our

ability to choose pseudoface H as our Mazur-augmenting parameter, eight would be our bound.
13The exceptional condition reduces pj and pk to degree six. See previous footnote.
14For x 6= y, octics pj and pk also have non-zero leading and trailing coefficients. Also, note

that the bisohedral exceptional condition does not apply here, since we do not allow u to vanish.
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The Lisoněk-Israel pair in [1] falls into this category, with X = 1
4

√
7, Y = 1

2 ,

V = 1
12

√
3, r = 1

6

√
21 (so, x = 7

16 , y = 1
4 , u = 3

16 and s = 7
3 ). These give

(26) p′h(· · · ) = (4h− 1)
(
64h3 − 48h2 + 76h− 9

)
with two real roots, h = 1

4 and h = 1
4−

1
2

3

√
9+
√
849

18 + 1
2

3

√
−9+

√
849

18 = 0.1268 . . .. The

simple h has companion parameters (j, k) =
(

3
16 ,

15
16

)
; relations (11) convert these

to the squared-lengths of edges:
(
a2, b2, c2, d2, e2, f2

)
= (1, 1, 2, 2, 1, 2). The com-

plicated h leads to (j, k) = (0.3462 . . . , 0.9019 . . .), and thence to a2 = 0.5907 . . .,
d2 = 1.0982 . . ., b2 = e2 = 1.7122 . . ., c2 = f2 = 2.0881 . . ..

A computer search has revealed numerous examples of Mazur metrics that de-
termine three distinct tetrahedra. For instance, (X,Y, V, r) =

(
1, 2325 ,

33
100 , 1

)
yields

these pseudoface-area parameters:

(27) (h, j, k) =


(0.3490 . . . , 1.5329 . . . , 1.8108 . . .)

(1.3265 . . . , 0.3756 . . . , 1.9906 . . .)

(2.2993 . . . , 0.4867 . . . , 0.9067 . . .)

By Descartes’ Rule of Signs, an even number of sign changes in the coefficients
of p′h implies an even number of positive roots; if there are three positive roots here,
there must be four. However, in all observed cases where p′h admits four positive
roots, one of those roots has been too large to be viable. This author has not
investigated whether this is always so.

2.4. The Trisohedral Case (W and X = Y = Z).

Yes and (very) No, Mr. Mazur. Typically, your metrics determine at most
one strictly-trisohedral tetrahedron. Exceptionally, a continuum of them.

When three face-areas match, the bisohedral quartic (22) collapses to a trisohe-
dral cubic:

p′′h(w, x, x, x;u; s) = h3
(
u2 − 3x(w − x)2

)
(28)

− h2
(
u2 − 3x(w − x)2

)
(w + 3x)

+ h
(
su3 − x(w − x)2(w + 3x)2

)
−

(
u2 − 3x(w − x)2

) (
u2 + x(w − x)2

)
so that, when the leading coefficient doesn’t vanish, MP1 limits the number of
possible Mazur-determined tetrahedra to three. That said, it’s more instructive
to consider directly the reduced sum of squares (4), volume (8), and radius (12)
formulas, which we can express thusly:

(29) h+ j + k = w + 3x hjk = u2 + x(w − x)2

(hj + jk + kh)
(
u2 − 3x(w − x)2

)
= su3 − x(w − x)2(w + 3x)2(30)

Note the appearance of the cubic’s leading and linear coefficients in (30). If these
expressions are non-zero, then we can solve for the coefficients of a Vieta cubic
µ3−µ2(h+ j+k)+µ(hj+ jk+kh)−hjk, whose roots form a complete parametric
set: h, j, k. Therefore, there is actually at most one Mazur-determined tetrahedron
(up to isometry).
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2.4.1. The exceptionally-exceptional condition. When u2 = 3x(w−x)2, the leading
coefficient of p′′h is zero; indeed, by (30), all coefficients are zero: the polynomial
simply ceases to constrain h. Only the sum-of-squares and volume formulas (29)
govern the psuedoface-areas; consequently, the possibility exists for them to define
a continuum of tetrahedra. These would be parameterized by any two psuedoface-
areas —say, h and j— on the cubic curve

(31) hj(w + 3x− h− j) = 4x(w − x)2

The Law of Opposite Cosines (5) restricts h, and likewise j, to lie between (W−X)2

and (W + X)2 (which, in this case, are tighter bounds than (Y − Z)2 = 0 and
(Y + Z)2 = 4X2). When a non-trivial arc of the cubic exists within those bounds,
the Mazur metrics determine infinitely-many tetrahedra.

The Yang-Zeng cubic discussed in this note’s introduction provides a specific
instance of this scenario, using Mazur metrics (W,X, V, r) = 84

√
3, 63

√
3, 441,

43
√

3/6 (so, (w, x, u, s) = (21168, 11907, 194481, 1849/3)). Equation (2) is the coun-
terpart of (31).

2.4.2. Viability for the continuum. The exceptionally-exceptional condition implies

(32) hjk = 4x(w − x)2

But, then, the Arithmetic-Geometric Means Inequality tells us

(33) (h+ j + k)3 ≥ 33 hjk → (w + 3x)3 ≥ 108x(w − x)2

That is, defining λ := W
X 6= 1,

(34)
(

(3 + λ)3 − 36(3 + λ) + 72
) (

(3− λ)3 − 36(3− λ) + 72
)
≤ 0

We can find where the inequality is an equality explicitly:

(35) 3± λ = 4
√

3 cos
(

5
18π + 2

3nπ
)

n = 0, 1, 2

For distinct positive W , X subject to the Tetrahedron Inequality (7), λ ≤ 3, we
find that we have this range of viability for strictly-trisohedral tetrahedra:

(36) 3− 4
√

3 sin 1
9π︸ ︷︷ ︸

0.6304...

≤ λ < 1 or 1 < λ ≤ −3 + 4
√

3 sin 2
9π︸ ︷︷ ︸

1.4533...

For face-areas satisfying the strict inequalities (as in the Yang-Zeng example, which
has λ = 4

3 ), the Mazur metrics

(37)

(
λ2x, x, x, x;u2 = 3X3

(
λ2 − 1

)2
; s =

√
3 X(λ2 + 3)2

9 |λ2 − 1|

)

have a continuum of viable solutions to (29), hence a continuum of corresponding
tetrahedra. For face-areas satisfying either (non-unit) equalities, we necessarily
have h = j = k; consequently, each extreme value of W/X, together with volume
satisfying (32), determines a unique strictly-trisohedral tetrahedron in the form of
a right pyramid with an equilateral-triangle base and non-equilateral lateral faces.
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2.5. The Equihedral Case (W = X = Y = Z).

Yes, Mr. Mazur. Your metrics determine at most one
equihedral tetrahedron (but you already knew this).

When all face-areas match, we may ignore the h-j-k polynomials per se. Rela-
tions (4), (8), (12) reduce to

(38) h+ j + k = 4w hj + jk + kh = su hjk = u2

which are exactly the coefficients of the Vieta cubic µ3 − µ2(h + j + k) + µ(hj +
jk + kh) − hjk having roots h, j, k. Consequently, the Mazur metrics determine
at most one tetrahedron (up to isometry). Proving this known fact is one of two
preliminary challenges posed by Mazur.

2.5.1. Digression. Mazur’s second preliminary challenge is to show that face-area
and radius alone determine an equihedral tetrahedron only when that tetrahedron
is regular. We can meet the challenge by invoking a Newton-Maclaurin polynomial
inequality thusly:

(39) 1
3 (h+ j + k) · hjk ≤ 1

9 (hj + jk + kh)
2 → 12w ≤ s2

When (39) is a strict inequality, the values of h, j, k vary with dependence on u
(that is, volume). On the other hand, equality forces h = j = k, and the result is
a unique, necessarily-regular equihedral tetrahedron determined by face-area and
radius alone.

2.6. A Bonus Case (W = 3
4

√
3r2). Lisoněk and Israel [1] consider another situa-

tion posed by Mazur:

Mazur’s Second Question. Is every tetrahedron [that is] determined just
by the areas of its faces and the radius of its circumscribed sphere [...] regular?

The authors justify an answer of “No” by noting that the case W = 3
4

√
3r2 forces

face W to be an equilateral triangle inscribed in a great circle of the tetrahedron’s
circumsphere, already imposing sufficient structure on the figure that the remaining
face-areas are enough to determine it completely. Indeed, there are only two degrees
of freedom in locating the vertex oppositeW on the circumsphere, yet three available
parameters X, Y , Z; therefore, we expect such a tetrahedron to be over-determined
by its radius and face-areas. We provide here a (mostly-)hedronometric discussion
of this configuration.

Re-notation. This section uses w, x, y, z differently than the others.

Let O be the circumcenter of the tetrahedron (and of face W ), let P be the vertex
opposite W , let Q be the projection of P into the plane of W . Let w := |PQ| be
the altitude perpendicular to W , and note that

(40) w =
2X

d
sinD =

2Y

e
sinE =

2Z

f
sinF

This relation holds for any tetrahedron, but here we have specifically d = e = f =√
3r. Relatedly, let us define x, y, z as the signed distances from Q to the sides of
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W , as follows:

(41) x :=
2X

d
cosD y :=

2Y

e
cosE z :=

2Z

f
cosF

For equilateral15 W , the reader can verify this formula for the power of Q with
respect to the circumcircle of W :

(42) pow(Q) := |OQ|2 − r2 = − 4
3 (xy + yz + zx)

Importantly, the definition of pow(Q) matches the Pythagorean calculation for
−|PQ|2 (that is, −w2). Consequently, (40) and the easily-derived identity

(43) W = X cosD + Y cosE + Z cosF

allow us to write

w2 =
4X2

d2
sin2D =

4Y 2

d2
sin2E =

4Z2

d2
sin2 F(44)

=
8

3d2
(
W 2 −X2 cos2D − Y 2 cos2E − Z2 cos2 F

)
from which we readily deduce

(45) X2 sin2D = Y 2 sin2E = Z2 sin2 F = 2
3

(
−W 2 +X2 + Y 2 + Z2

)
Thus, we know the dihedral angles D, E, F , up to supplement. Since Q is confined
to the circumcircle of W , at most one of D, E, F is obtuse, so that at most one
of their cosines is negative. In light of (43) we see that, up to symmetry, only one
assignment of signs on the non-zero terms can hold. Consequently, the shape of the
tetrahedron is uniquely determined, confirming the findings of Lisoněk and Israel.

2.6.1. A note about viability. After three rounds of squaring, we can trade the
cosines in (43) for even powers of sine, which we replace via (45) to obtain the
following:

0 = 5µ4 − 25µ3
(
X2 + Y 2 + Z2

)
+ 23 · 33 · µ2

(
X2Y 2 + Y 2Z2 + Z2X2

)
(46)

− 26 · 33 · µX2Y 2Z2 + 24 · 33 · [XY, Y Z,ZX]

where µ := −W 2 + X2 + Y 2 + Z2. This equation serves as a necessary condition
for face-areas in this bonus case.

3. Conclusion

Hedronometry has proven to be especially-well-suited to the investigation of
Mazur’s Question(s). Rather than falling back on edge-length-based determina-
tions of tetrahedra —introducing six auxiliary parameters to a discussion already
involving six metrics— we have shown that augmenting four given face-area metrics
with just three pseudoface-area parameters gets us where we need to go, and the
single pseudoface polynomial (14) provides a natural, unified context for cases that
had been discussed elsewhere in isolation. Moreover, the “Mazur + Pseudoface =
1” Principle has helped streamline the enumeration of solutions.

15For a not-necessarily-equilateral 4ABC, the circumcircle power of point Q with (signed)
distances x, y, z from sides opposite respective vertices A, B, C is

pow(Q) = −
yz sinA+ zx sinB + xy sinC

sinA sinB sinC
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