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In [3], Leo Gurin presents a delightful construction —attributed to Y. S. Chaikovsky—
that reveals “the geometric meaning of every term in the [power] series” of the cosine and
sine functions. This note adapts the method to demystify the corresponding series for the
secant and tangent functions.

1. The Pinwheel and the Zig-Zag

Chaikovsky’s construction begins with a circular arc, I1 :=
_
PP1, having center P0, radius

1, and length θ. (We assume throughout that 0 < θ < π/2.) For each i > 1, let Ii be
the involute of Ii−1 that emerges from endpoint P , creating the pinwheel arrangement in
Figure 1. For completeness, we designate the radius PP0 to be I0.

Figure 1. Chaikovsky’s Involute Pinwheel

Date: 27 November, 2005. Revised 20 October, 2019.

1



2 BLUE, THE TRIGONOGRAPHER

Elementary trigonometry tells us that cos θ and sin θ are the lengths of, respectively, the
horizontal and vertical legs of the right triangle with hypotenuse PP0. We observe that,
as the polygonal spiral P0P1P2 . . . closes-in on the point P , the terms of alternating series
for those values appear as the lengths of the horizontal and vertical segments of that spiral
(equivalently, as lengths of the curves Ii):

cos θ =

∞∑
j=0

(−1)j |P2jP2j+1| =

∞∑
j=0

(−1)j |I2j | =
∑
i even

±|Ii|(1)

sin θ =

∞∑
j=0

(−1)j |P2j+1P2j+2| =

∞∑
j=0

(−1)j |I2j+1| =
∑
i odd

±|Ii|(2)

Chaikovsky uses clever combinatorial arguments show that |Ii| = 1
i!θ

i, making (1) and
(2) the power series expansions.

With one simple conceptual change to Chaikovsky’s approach —trading involutes that
emerge from a common starting point to ones that emerge from successive terminal points—
the pinwheel becomes the zig-zag in Figure 2.

Figure 2. The Involute Zig-Zag

Here, I1 is the circular arc
_

P1P2 with center P0, radius 1, and length θ; and Ii+1 is the
involute of Ii with endpoints Pi and Pi+1. (We designate radius P0P1 to be I0.) Points Pi

converge on P , the point at which the extended radius P0P2 (containing all points Peven)
meets the circular arc’s tangent line at P1 (containing all points Podd), and we have

sec θ :=
∣∣P0P

∣∣ =
∞∑
j=0

|P2jP2j+1| =
∞∑
j=0

|I2j | =
∑
i even

|Ii|(3)

tan θ :=
∣∣P1P

∣∣ =
∞∑
j=0

|P2j+1P2j+2| =
∞∑
j=0

|I2j+1| =
∑
i odd

|Ii|(4)
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Proof of the convergence is straightforward and left to the reader. We focus on demon-
strating that (3) and (4) are power series expansions, with |Ii| = 1

i!ziθ
i, where the zi comprise

a collection of known constants. Our arguments closely follow Chaikovsky’s inspired lead,
requiring nothing more than the same basic geometry and slightly-more-elaborate combi-
natorics, and an appeal to an elementary limit from calculus.

2. Polygonal Involutes

We approach our result via increasingly-accurate polygonal approximations to our zig-
zag’s constituent involutes, extending the notion of such an approximation of a circular arc.

Figure 3. Polygonal zig-zag involutes I4i , I6i , and I8i .
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Specifically, for integer n > 1, define In0 as the unit radius segment I0 itself, and define In1
as the approximation of circular arc I1 by n congruent chords, which we’ll call segments of
In1 ; each segment is the base of an isosceles triangle with unit-length legs and vertex angle
θ/n, so its length is λ := 2 sin(θ/2n). Now, iterate: for every i < n, extend each segment
(except the last) of Ini by the total length of the later segments in Ini , as indicated in Figure
3. The extensions yield n− i+ 1 isosceles triangles with vertex angle θ/n, and the bases of
these triangles comprise the segments of Ini+1; note that each segment’s length must be an

integer multiple of λi.
The construction results in a total of n+ 1 polygonal paths. Path Ini+1 (for i > 1) is the

“polygonal involute” of Ini in the sense that the endpoints of the segments of Ini+1 mark the
progress of Ini as it straightens in discrete stages. The distance from the starting point of
Ini to the endpoint of Ini+1 is the length of the fully-straightened path; that is, |Ini |.

As n increases without bound, this polygonal zig-zag acquires evermore zigs and zags,
the vertex angles of the various isosceles triangles converge to 0, and the discrete involute-
like behavior approaches continuous involute behavior, ensuring that each individual Ini
converges to its counterpart Ii, and thus also that each |Ini | converges to |Ii|.

2.1. Measuring Polygonal Involutes, and Passing to the Limit. As noted, the length
of each segment of Ini —and thus of each complete Ini — is some integer multiple of λi. But
which integers?

n = 4 n = 6 n = 8

i seg lengths* total seg lengths* total segment lengths* total

0 1 1 = 1
(
4
0

)
1 1 = 1

(
6
0

)
1 1 = 1

(
8
0

)
1 1, 1, 1, 1 4 = 1

(
4
1

)
1, 1, 1, 1, 1, 1 6 = 1

(
6
1

)
1, 1, 1, 1, 1, 1, 1, 1 8 = 1

(
8
1

)
2 1, 2, 3 6 = 1

(
4
2

)
1, 2, 3, 4, 5 15 = 1

(
6
2

)
1, 2, 3, 4, 5, 6, 7 28 = 1

(
8
2

)
3 3, 5 8 = 2

(
4
3

)
5, 9, 12, 14 40 = 2

(
6
3

)
7, 13, 18, 22, 25, 27 112 = 2

(
8
3

)
4 5 5 = 5

(
4
4

)
14, 26, 35 75 = 5

(
6
4

)
27, 52, 74, 92, 105 350 = 5

(
8
4

)
5 — — 35, 61 96 = 16

(
6
5

)
105, 197, 271, 323 896 = 16

(
8
5

)
6 — — 61 61 = 61

(
6
6

)
323, 594, 791 1708 = 61

(
8
6

)
7 — — — — 791, 1385 2176 = 272

(
8
7

)
8 — — — — 1385 1385 = 1385

(
8
8

)
*when multiplied by λi, where λ := 2 sin(θ/2n)

Table 1. Lengths of segments in the polygonal zig-zag involutes Ini

Row i = 1 of Table 1, being populated with 1s, records that the segments of In1 have
equal lengths. Thereafter, the elements of row i are the first n − i + 1 partial sums of the
reversed-order row i− 1. The sequences may appear somewhat haphazard, but their totals
exhibit a pattern: each is the product of a naturally-corresponding binomial coefficient and,
perhaps-surprisingly, a term of a common sequence of integers, (zi) := 1, 1, 1, 2, 5, 16, 61,
. . .. We show in Section 3 that these zi truly do what they seem to do (and, in particular,
that they are independent of n); for now, we assume this fact, which allows us to write:

(5) |Ini | = ziλ
i

(
n

i

)
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At this point, we make our sole appeal to calculus, invoking a fundamental result:

(6) lim
x→0

sinx

x
= 1 or, as we require it: lim

n→∞
λn = lim

n→∞
2n · sin θ

2n
= θ

This catalyzes a straightforward calculation:

|Ii| := lim
n→∞

|Ini | = lim
n→∞

ziλ
i

(
n

i

)
(7)

=
1

i!
· zi · lim

n→∞
(λn)i · lim

n→∞

n

n
· n− 1

n
· n− 2

n
· · · · · n− i+ 1

n

=
1

i!
· zi · θi

Just like that, we have demonstrated that the series (3) and (4) for sec θ and tan θ are, in
fact, power series expansions, as claimed. �

We turn to investigating the constants zi, which arise from yet-another zig-zaggy context.

3. Up-Down Sequences and Permutations

Definition. An i-term up-down sequence of n elements1 is a sequence X = (x1, x2, . . . , xi)
with xk ∈ [n] := {1, 2, . . . , n} and x1 < x2 > x3 < · · · ≶ xi. When i = n, the sequence is
known as an up-down permutation of [n]. The up-down sequence Xs := (x1, x2, . . . , xi, s) is
a successor of X, with s called a successory to X; successors are ordered so that, for k ≥ 1,
the k-th successor of X ends in the successory k-th closest to xi (i.e., the k-th successory).

For example, these are the up-down sequences of [4], each linked to its successor(s):

(1)

(12) (13)

(132)

(1324)

(14)

(143) (142)

(1423)

(2)

(23)

(231)

(2314)

(24)

(243) (241)

(2413)

(3)

(34)

(342) (341)

(3412)

(4)

Observe that the ordering of successories allows us state that, if sk is the k-th successory
of X, then the successories of Xsk are all of the non-successories of X, along with the first
k − 1 successories of X. (See Figure 4.)

Figure 4. The successories of the k-th successor of X.

1Beware: In the literature, the similar term zig-zag sequence sometimes means up-down or down-up.
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This gives a successor-counting recursion we’ll find helpful:

| {successors of k-th successor of X} | = | {non-successories of X} |+ (k − 1)(8)

= | [n] \X \ {successories of X} |+ (k − 1)

= n− |X| − | {successors of X} |+ (k − 1)

For another key counting result, consider: each i-term up-down sequence of [n] corre-
sponds to a unique i-term up-down permutation (of [i]): simply replace the k-th smallest
element of the sequence with “k” for each k. Conversely, each i-term up-down permutation
(of [i]) corresponds to

(
n
i

)
distinct i-term up-down sequences of [n]: for each choice of i

elements from [n], replace “k” in the permutation with the k-th smallest chosen element.
Therefore, we can write

(9) |{i-term up-down sequences of [n]}| =

(
n

i

)
|{i-term up-down permutations}|

Désiré André [1] first studied up-down permutations in 1879, finding that the number of
i-term permutations, for the first few i, are:2 (1, ) 1, 1, 2, 5, 16, 61, 272, 1385, . . .. The
reader may recognize these values as the zi we encountered when measuring our polygonal
involutes in Section 2.1. Indeed, the appearance of the binomial coefficient factor, both
then and now, invites reinterpreting (9) to assert

(10) |Ini | = λi |{i-term up-down sequences of [n]}|

If we can verify this relation, then we will have shown that André’s sequence actually
matches our zi. This, in turn, will close the gap in the argument of Section 2.1.

3.1. Up-Downs on the Zig-Zag. The clearest way to demonstrate (10) is to incorporate
up-down sequences into the construction of our zig-zag involutes. We start with the “empty”
sequence on In0 , and then each 1-term sequence (in “decreasing order” when traversing from
P1 to P2) on each λ-length segment of In1 . (See Figure 5.)

Figure 5. Adorning I40 , I41 , and I42 with up-down sequences of [4].

2With the inclusion of the leading 1 for i = 0 —and representing the “empty” permutation— this is entry
A000111 in the On-line Encyclopedia of Integer Sequences. https://oeis.org/A000111
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Then, for each segment of In1 , we place its sequence’s k-th successor on a λ-length exten-
sion of the k-th prior segment. Since each sequence has as many successors as its segment
has priors, the extensions accumulate into the legs of the isosceles triangles from our pre-
vious construction strategy; this allows us to transfer the complete set of 2-term up-down
sequences of [n] from the legs of those triangles to the λ2-length sub-segments of the corre-
sponding bases, which comprise the segments of In2 .

Now, we iterate, placing the k-th successor of each i-term sequences from (a sub-segment
of) each segment of Ini onto a λi-length extension of the k-th prior segment. Provided that
the extensions again form isosceles triangles (which we show below), we transfer a complete
set of (i + 1)-term sequences to λi+1-length sub-segments of the bases of those triangles,
building an Ini+1 that matches our geometric construction. (See Figure 6.)

Figure 6. Adorning all I4i with i-term up-down sequences of [4].

We see, then, that every i-term up-down sequence of [n] appears exactly once somewhere
on Ini , so that its length satisfies (10).

As a final detail, we establish the isosceles nature of the triangles by proving that (starting
with j = 0) any sequence on the j-th segment of any Ini has exactly j successors.

The property certainly holds for i = 1; so let’s assume the property holds for some i ≥ 1.
To keep the index arithmetic sane, we structure our argument as rolling refinement of the
successor-counting recursion result (8), which we can state thusly:

k-th successor of an i-term sequence with j successors has n− i− j + k − 1 successors

By our induction hypothesis, this becomes:

k-th successor of any sequence on the j-th segment of Ini has n−i−j+k−1 successors

By construction, such a k-th successor adorns an extension of the k-th prior segment of Ini ;
defining p := j − k, we have:
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a sequence on any extension of the p-th segment of Ini has n− i− p− 1 successors

Finally, sequences on extensions of the p-th segment of Ini transfer to the (n− i− 1− p)-th
segment3 of Ii+1. Defining q := n− i− 1− p:

any sequence on the q-th segment of Ini+1 has q successors

This extends the required successor property to the segments of Ini+1, completing the induc-
tion and our overall proof. �

4. Notes

• We have recaptured André’s theorem that sec θ+tan θ is the exponential generating
function for the numbers zi. See [2] and [4].

• In Chaikovsky’s geometric construction of polygonal approximations to the involute
pinwheel, binomial coefficients appear in essentially the same way they appeared
in our Section 2.1, from considering partial sums of segment lengths. There is a
corresponding sequence-based construction to match that of our zig-zag: we need
only replace up-down sequences with the up-up variety (that is, monotone increasing
sequences). See Figure 7.

Figure 7. Adorning a polygonal pinwheel with up-up sequences of [4].

Like the zig-zag case (but with far less effort), one can show that all (and only) i-
term up-up sequences of n elements occur on Ini . And, like the zig-zag case, one can
establish an

(
n
i

)
-to-1 correspondence between i-term up-up sequences of n elements

3Arithmetic sanity check: The last segment —i.e., the (n − i)-th— of Ini receives no extensions, but
extensions of the next-to-last segment —the (n− i− 1)-th— have sequences that transfer to the first —the
0-th— segment of Ini+1. Extensions of earlier segments of Ini transfer to later segments of Ii+1.
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and i-term up-up permutations. (This represents a minor —but satisfying— im-
provement over Chaikovsky’s formulation, as the binomial coefficient appears, not as
the result of some inductive calculation, but in its most combinatorially-meaningful
capacity.) Unlike in the zig-zag case, we have uniqueness: there is exactly one i-term
up-up permutation, namely, “(1, 2, ..., i)”; we have no need, therefore, for an explicit
“zi”-like factor when counting the n-term sequences. Apart from this, the remain-
ing computations of the lengths of the (polygonal or true) involutes are completely
analogous across both the pinwheel and zig-zag cases.

• The author gratefully acknowledges the assistance of Robin Chapman of the Uni-
versity of Exeter.

• Now, what about csc θ and cot θ?
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